Results for: "Array"

Create a new NumberedParametersNode node.

Create a new OptionalParameterNode node.

Create a new RequiredParameterNode node.

Create a new RestParameterNode node.

No documentation available
No documentation available

def foo(…); end

^^^

Validates the Diffie-Hellman parameters associated with this instance. It checks whether a safe prime and a suitable generator are used. If this is not the case, false is returned.

See also the man page EVP_PKEY_param_check(3).

Sets saner defaults optimized for the use with HTTP-like protocols.

If a Hash params is given, the parameters are overridden with it. The keys in params must be assignment methods on SSLContext.

If the verify_mode is not VERIFY_NONE and ca_file, ca_path and cert_store are not set then the system default certificate store is used.

Responsible for finding the nearest targets to the given comment within the context of the given encapsulating node.

Configure the character offsets field for this repository and return self.

Configure the character columns field for this repository and return self.

No documentation available

Returns self.

Returns the value as a rational. The optional argument eps is always ignored.

Return the class or module refined by the receiver.

module M
  refine String do
  end
end

M.refinements[0].target # => String

Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:

Complex.rect(3)             # => (3+0i)
Complex.rect(3, Math::PI)   # => (3+3.141592653589793i)
Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)

Complex.rectangular is an alias for Complex.rect.

Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational. Argument arg is given in radians; see Polar Coordinates:

Complex.polar(3)        # => (3+0i)
Complex.polar(3, 2.0)   # => (-1.2484405096414273+2.727892280477045i)
Complex.polar(-3, -2.0) # => (1.2484405096414273+2.727892280477045i)

Returns the imaginary value for self:

Complex.rect(7).imag     # => 0
Complex.rect(9, -4).imag # => -4

If self was created with polar coordinates, the returned value is computed, and may be inexact:

Complex.polar(1, Math::PI/4).imag # => 0.7071067811865476 # Square root of 2.

Returns the argument (angle) for self in radians; see polar coordinates:

Complex.polar(3, Math::PI/2).arg  # => 1.57079632679489660

If self was created with rectangular coordinates, the returned value is computed, and may be inexact:

Complex.polar(1, 1.0/3).arg # => 0.33333333333333326

Returns the array [self.real, self.imag]:

Complex.rect(1, 2).rect # => [1, 2]

See Rectangular Coordinates.

If self was created with polar coordinates, the returned value is computed, and may be inexact:

Complex.polar(1.0, 1.0).rect # => [0.5403023058681398, 0.8414709848078965]

Complex#rectangular is an alias for Complex#rect.

Returns the array [self.abs, self.arg]:

Complex.polar(1, 2).polar # => [1.0, 2.0]

See Polar Coordinates.

If self was created with rectangular coordinates, the returned value is computed, and may be inexact:

Complex.rect(1, 1).polar # => [1.4142135623730951, 0.7853981633974483]

Returns the Complex object created from the numerators of the real and imaginary parts of self, after converting each part to the lowest common denominator of the two:

c = Complex.rect(Rational(2, 3), Rational(3, 4)) # => ((2/3)+(3/4)*i)
c.numerator                                      # => (8+9i)

In this example, the lowest common denominator of the two parts is 12; the two converted parts may be thought of as Rational(8, 12) and Rational(9, 12), whose numerators, respectively, are 8 and 9; so the returned value of c.numerator is Complex.rect(8, 9).

Related: Complex#denominator.

Returns a Rational object whose value is exactly or approximately equivalent to that of self.real.

With no argument epsilon given, returns a Rational object whose value is exactly equal to that of self.real.rationalize:

Complex.rect(1, 0).rationalize              # => (1/1)
Complex.rect(1, Rational(0, 1)).rationalize # => (1/1)
Complex.rect(3.14159, 0).rationalize        # => (314159/100000)

With argument epsilon given, returns a Rational object whose value is exactly or approximately equal to that of self.real to the given precision:

Complex.rect(3.14159, 0).rationalize(0.1)          # => (16/5)
Complex.rect(3.14159, 0).rationalize(0.01)         # => (22/7)
Complex.rect(3.14159, 0).rationalize(0.001)        # => (201/64)
Complex.rect(3.14159, 0).rationalize(0.0001)       # => (333/106)
Complex.rect(3.14159, 0).rationalize(0.00001)      # => (355/113)
Complex.rect(3.14159, 0).rationalize(0.000001)     # => (7433/2366)
Complex.rect(3.14159, 0).rationalize(0.0000001)    # => (9208/2931)
Complex.rect(3.14159, 0).rationalize(0.00000001)   # => (47460/15107)
Complex.rect(3.14159, 0).rationalize(0.000000001)  # => (76149/24239)
Complex.rect(3.14159, 0).rationalize(0.0000000001) # => (314159/100000)
Complex.rect(3.14159, 0).rationalize(0.0)          # => (3537115888337719/1125899906842624)

Related: Complex#to_r.

Returns zero as a Rational:

nil.rationalize # => (0/1)

Argument eps is ignored.

Search took: 5ms  ·  Total Results: 2478