Each element in the returned enumerator is a 2-element array consisting of:
A value returned by the block.
An array (“chunk”) containing the element for which that value was returned, and all following elements for which the block returned the same value:
So that:
Each block return value that is different from its predecessor begins a new chunk.
Each block return value that is the same as its predecessor continues the same chunk.
Example:
e = (0..10).chunk {|i| (i / 3).floor } # => #<Enumerator: ...> # The enumerator elements. e.next # => [0, [0, 1, 2]] e.next # => [1, [3, 4, 5]] e.next # => [2, [6, 7, 8]] e.next # => [3, [9, 10]]
Method chunk
is especially useful for an enumerable that is already sorted. This example counts words for each initial letter in a large array of words:
# Get sorted words from a web page. url = 'https://raw.githubusercontent.com/eneko/data-repository/master/data/words.txt' words = URI::open(url).readlines # Make chunks, one for each letter. e = words.chunk {|word| word.upcase[0] } # => #<Enumerator: ...> # Display 'A' through 'F'. e.each {|c, words| p [c, words.length]; break if c == 'F' }
Output:
["A", 17096] ["B", 11070] ["C", 19901] ["D", 10896] ["E", 8736] ["F", 6860]
You can use the special symbol :_alone
to force an element into its own separate chuck:
a = [0, 0, 1, 1] e = a.chunk{|i| i.even? ? :_alone : true } e.to_a # => [[:_alone, [0]], [:_alone, [0]], [true, [1, 1]]]
For example, you can put each line that contains a URL into its own chunk:
pattern = /http/ open(filename) { |f| f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines| pp lines } }
You can use the special symbol :_separator
or nil
to force an element to be ignored (not included in any chunk):
a = [0, 0, -1, 1, 1] e = a.chunk{|i| i < 0 ? :_separator : true } e.to_a # => [[true, [0, 0]], [true, [1, 1]]]
Note that the separator does end the chunk:
a = [0, 0, -1, 1, -1, 1] e = a.chunk{|i| i < 0 ? :_separator : true } e.to_a # => [[true, [0, 0]], [true, [1]], [true, [1]]]
For example, the sequence of hyphens in svn log can be eliminated as follows:
sep = "-"*72 + "\n" IO.popen("svn log README") { |f| f.chunk { |line| line != sep || nil }.each { |_, lines| pp lines } } #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n", # "\n", # "* README, README.ja: Update the portability section.\n", # "\n"] # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n", # "\n", # "* README, README.ja: Add a note about default C flags.\n", # "\n"] # ...
Paragraphs separated by empty lines can be parsed as follows:
File.foreach("README").chunk { |line| /\A\s*\z/ !~ line || nil }.each { |_, lines| pp lines }
With no block, returns a new array containing only unique elements; the array has no two elements e0
and e1
such that e0.eql?(e1)
:
%w[a b c c b a a b c].uniq # => ["a", "b", "c"] [0, 1, 2, 2, 1, 0, 0, 1, 2].uniq # => [0, 1, 2]
With a block, returns a new array containing elements only for which the block returns a unique value:
a = [0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1] a.uniq {|i| i.even? ? i : 0 } # => [0, 2, 4] a = %w[a b c d e e d c b a a b c d e] a.uniq {|c| c < 'c' } # => ["a", "c"]
Returns an array of all non-nil
elements:
a = [nil, 0, nil, 'a', false, nil, false, nil, 'a', nil, 0, nil] a.compact # => [0, "a", false, false, "a", 0]
Returns true if coverage stats are currently being collected (after Coverage.start
call, but before Coverage.result
call)
Returns system configuration directory.
This is typically "/etc"
, but is modified by the prefix used when Ruby was compiled. For example, if Ruby is built and installed in /usr/local
, returns "/usr/local/etc"
on other platforms than Windows.
On Windows, this always returns the directory provided by the system.
Returns the system information obtained by uname system call.
The return value is a hash which has 5 keys at least:
:sysname, :nodename, :release, :version, :machine
Example:
require 'etc' require 'pp' pp Etc.uname #=> {:sysname=>"Linux", # :nodename=>"boron", # :release=>"2.6.18-6-xen-686", # :version=>"#1 SMP Thu Nov 5 19:54:42 UTC 2009", # :machine=>"i686"}
Returns system configuration variable using sysconf().
name should be a constant under Etc
which begins with SC_
.
The return value is an integer or nil. nil means indefinite limit. (sysconf() returns -1 but errno is not set.)
Etc.sysconf(Etc::SC_ARG_MAX) #=> 2097152 Etc.sysconf(Etc::SC_LOGIN_NAME_MAX) #=> 256
Returns system configuration variable using confstr().
name should be a constant under Etc
which begins with CS_
.
The return value is a string or nil. nil means no configuration-defined value. (confstr() returns 0 but errno is not set.)
Etc.confstr(Etc::CS_PATH) #=> "/bin:/usr/bin" # GNU/Linux Etc.confstr(Etc::CS_GNU_LIBC_VERSION) #=> "glibc 2.18" Etc.confstr(Etc::CS_GNU_LIBPTHREAD_VERSION) #=> "NPTL 2.18"
Returns the Ruby object stored at the memory address addr
Example:
x = Object.new # => #<Object:0x0000000107c7d870> Fiddle.dlwrap(x) # => 4425504880 Fiddle.dlunwrap(_) # => #<Object:0x0000000107c7d870>
Encodes string using String.encode
.
Returns an inspect() string summarizing the object state.
Returns self, for backward compatibility.
Decode the given gzipped string
.
This method is almost equivalent to the following code:
def gunzip(string) sio = StringIO.new(string) gz = Zlib::GzipReader.new(sio, encoding: Encoding::ASCII_8BIT) gz.read ensure gz&.close end
See also Zlib.gzip
With string object
given, returns true
if path
is a string path leading to a directory, or to a symbolic link to a directory; false
otherwise:
File.directory?('.') # => true File.directory?('foo') # => false File.symlink('.', 'dirlink') # => 0 File.directory?('dirlink') # => true File.symlink('t,txt', 'filelink') # => 0 File.directory?('filelink') # => false
Argument path
can be an IO
object.
Returns true
if the named file has the sticky bit set.
file_name can be an IO
object.
Returns true
if the named files are identical.
file_1 and file_2 can be an IO
object.
open("a", "w") {} p File.identical?("a", "a") #=> true p File.identical?("a", "./a") #=> true File.link("a", "b") p File.identical?("a", "b") #=> true File.symlink("a", "c") p File.identical?("a", "c") #=> true open("d", "w") {} p File.identical?("a", "d") #=> false
This function compacts objects together in Ruby’s heap. It eliminates unused space (or fragmentation) in the heap by moving objects in to that unused space. This function returns a hash which contains statistics about which objects were moved. See GC.latest_gc_info
for details about compaction statistics.
This method is implementation specific and not expected to be implemented in any implementation besides MRI.
To test whether GC compaction is supported, use the idiom:
GC.respond_to?(:compact)
The number of times GC occurred.
It returns the number of times GC occurred since the process started.
Invokes the block with a Benchmark::Report object, which may be used to collect and report on the results of individual benchmark tests. Reserves label_width
leading spaces for labels on each line. Prints caption
at the top of the report, and uses format
to format each line. (Note: caption
must contain a terminating newline character, see the default Benchmark::Tms::CAPTION for an example.)
Returns an array of Benchmark::Tms
objects.
If the block returns an array of Benchmark::Tms
objects, these will be used to format additional lines of output. If labels
parameter are given, these are used to label these extra lines.
Note: Other methods provide a simpler interface to this one, and are suitable for nearly all benchmarking requirements. See the examples in Benchmark
, and the bm
and bmbm
methods.
Example:
require 'benchmark' include Benchmark # we need the CAPTION and FORMAT constants n = 5000000 Benchmark.benchmark(CAPTION, 7, FORMAT, ">total:", ">avg:") do |x| tf = x.report("for:") { for i in 1..n; a = "1"; end } tt = x.report("times:") { n.times do ; a = "1"; end } tu = x.report("upto:") { 1.upto(n) do ; a = "1"; end } [tf+tt+tu, (tf+tt+tu)/3] end
Generates:
user system total real for: 0.970000 0.000000 0.970000 ( 0.970493) times: 0.990000 0.000000 0.990000 ( 0.989542) upto: 0.970000 0.000000 0.970000 ( 0.972854) >total: 2.930000 0.000000 2.930000 ( 2.932889) >avg: 0.976667 0.000000 0.976667 ( 0.977630)
Returns the elapsed real time used to execute the given block.
Invokes the block with a Benchmark::Report object, which may be used to collect and report on the results of individual benchmark tests. Reserves label_width
leading spaces for labels on each line. Prints caption
at the top of the report, and uses format
to format each line. (Note: caption
must contain a terminating newline character, see the default Benchmark::Tms::CAPTION for an example.)
Returns an array of Benchmark::Tms
objects.
If the block returns an array of Benchmark::Tms
objects, these will be used to format additional lines of output. If labels
parameter are given, these are used to label these extra lines.
Note: Other methods provide a simpler interface to this one, and are suitable for nearly all benchmarking requirements. See the examples in Benchmark
, and the bm
and bmbm
methods.
Example:
require 'benchmark' include Benchmark # we need the CAPTION and FORMAT constants n = 5000000 Benchmark.benchmark(CAPTION, 7, FORMAT, ">total:", ">avg:") do |x| tf = x.report("for:") { for i in 1..n; a = "1"; end } tt = x.report("times:") { n.times do ; a = "1"; end } tu = x.report("upto:") { 1.upto(n) do ; a = "1"; end } [tf+tt+tu, (tf+tt+tu)/3] end
Generates:
user system total real for: 0.970000 0.000000 0.970000 ( 0.970493) times: 0.990000 0.000000 0.990000 ( 0.989542) upto: 0.970000 0.000000 0.970000 ( 0.972854) >total: 2.930000 0.000000 2.930000 ( 2.932889) >avg: 0.976667 0.000000 0.976667 ( 0.977630)
Returns the elapsed real time used to execute the given block.
Prints the amount of time the supplied block takes to run using the debug UI output.