def deconstruct_keys
: (keys: Array) -> Hash[Symbol, nil | Node
| Array | String
| Token
| Array | Location]
def deconstruct_keys
: (keys: Array) -> Hash[Symbol, nil | Node
| Array | String
| Token
| Array | Location]
def deconstruct_keys
: (keys: Array) -> Hash[Symbol, nil | Node
| Array | String
| Token
| Array | Location]
def deconstruct_keys
: (keys: Array) -> Hash[Symbol, nil | Node
| Array | String
| Token
| Array | Location]
def deconstruct_keys
: (keys: Array) -> Hash[Symbol, nil | Node
| Array | String
| Token
| Array | Location]
Dispatch enter and leave events for KeywordRestParameterNode
nodes and continue walking the tree.
When there is an invalid block with a keyword missing an end right before another end, it is unclear where which keyword is missing the end
Take this example:
class Dog # 1 def bark # 2 puts "woof" # 3 end # 4
However due to github.com/ruby/syntax_suggest/issues/32 the problem line will be identified as:
> class Dog # 1
Because lines 2, 3, and 4 are technically valid code and are expanded first, deemed valid, and hidden. We need to un-hide the matching end line 4. Also work backwards and if there’s a mis-matched keyword, show it too
The logical inverse of ‘capture_last_end_same_indent`
When there is an invalid block with an ‘end` missing a keyword right after another `end`, it is unclear where which end is missing the keyword.
Take this example:
class Dog # 1 puts "woof" # 2 end # 3 end # 4
the problem line will be identified as:
> end # 4
This happens because lines 1, 2, and 3 are technically valid code and are expanded first, deemed valid, and hidden. We need to un-hide the matching keyword on line 1. Also work backwards and if there’s a mis-matched end, show it too
Invoked as a callback whenever an instance method is removed from the receiver.
module Chatty def self.method_removed(method_name) puts "Removing #{method_name.inspect}" end def self.some_class_method() end def some_instance_method() end class << self remove_method :some_class_method end remove_method :some_instance_method end
produces:
Removing :some_instance_method
Returns an Addrinfo
object for remote address obtained by getpeername.
Note that addrinfo.protocol is filled by 0.
TCPSocket.open("www.ruby-lang.org", 80) {|s| p s.remote_address #=> #<Addrinfo: 221.186.184.68:80 TCP> } TCPServer.open("127.0.0.1", 1728) {|serv| c = TCPSocket.new("127.0.0.1", 1728) s = serv.accept p s.remote_address #=> #<Addrinfo: 127.0.0.1:36504 TCP> }
Ruby tries to load the library named string relative to the directory containing the requiring file. If the file does not exist a LoadError is raised. Returns true
if the file was loaded and false
if the file was already loaded before.
Create a new NumberedReferenceReadNode
node
Returns the values in self
as an array:
Customer = Struct.new(:name, :address, :zip) joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) joe.to_a # => ["Joe Smith", "123 Maple, Anytown NC", 12345]
Related: members
.
Returns the values in self
as an array, to use in pattern matching:
Measure = Data.define(:amount, :unit) distance = Measure[10, 'km'] distance.deconstruct #=> [10, "km"] # usage case distance in n, 'km' # calls #deconstruct underneath puts "It is #{n} kilometers away" else puts "Don't know how to handle it" end # prints "It is 10 kilometers away"
Or, with checking the class, too:
case distance in Measure(n, 'km') puts "It is #{n} kilometers away" # ... end
Returns the array of captures, which are all matches except m[0]
:
m = /(.)(.)(\d+)(\d)/.match("THX1138.") # => #<MatchData "HX1138" 1:"H" 2:"X" 3:"113" 4:"8"> m[0] # => "HX1138" m.captures # => ["H", "X", "113", "8"]
Related: MatchData.to_a
.
Returns strongly connected components as an array of arrays of nodes. The array is sorted from children to parents. Each elements of the array represents a strongly connected component.
class G include TSort def initialize(g) @g = g end def tsort_each_child(n, &b) @g[n].each(&b) end def tsort_each_node(&b) @g.each_key(&b) end end graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) p graph.strongly_connected_components #=> [[4], [2], [3], [1]] graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) p graph.strongly_connected_components #=> [[4], [2, 3], [1]]
Returns strongly connected components as an array of arrays of nodes. The array is sorted from children to parents. Each elements of the array represents a strongly connected component.
The graph is represented by each_node and each_child. each_node should have call
method which yields for each node in the graph. each_child should have call
method which takes a node argument and yields for each child node.
g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} each_node = lambda {|&b| g.each_key(&b) } each_child = lambda {|n, &b| g[n].each(&b) } p TSort.strongly_connected_components(each_node, each_child) #=> [[4], [2], [3], [1]] g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} each_node = lambda {|&b| g.each_key(&b) } each_child = lambda {|n, &b| g[n].each(&b) } p TSort.strongly_connected_components(each_node, each_child) #=> [[4], [2, 3], [1]]