Iterates backwards over array elements.
When a block given, passes, in reverse order, each element to the block; returns self
:
a = [:foo, 'bar', 2] a.reverse_each {|element| puts "#{element.class} #{element}" }
Output:
Integer 2 String bar Symbol foo
Allows the array to be modified during iteration:
a = [:foo, 'bar', 2] a.reverse_each {|element| puts element; a.clear if element.to_s.start_with?('b') }
Output:
2 bar
When no block given, returns a new Enumerator:
a = [:foo, 'bar', 2] e = a.reverse_each e # => #<Enumerator: [:foo, "bar", 2]:reverse_each> a1 = e.each {|element| puts "#{element.class} #{element}" }
Output:
Integer 2 String bar Symbol foo
Related: each
, each_index
.
Returns a new Array whose elements are the elements of self
at the given Integer
or Range
indexes
.
For each positive index
, returns the element at offset index
:
a = [:foo, 'bar', 2] a.values_at(0, 2) # => [:foo, 2] a.values_at(0..1) # => [:foo, "bar"]
The given indexes
may be in any order, and may repeat:
a = [:foo, 'bar', 2] a.values_at(2, 0, 1, 0, 2) # => [2, :foo, "bar", :foo, 2] a.values_at(1, 0..2) # => ["bar", :foo, "bar", 2]
Assigns nil
for an index
that is too large:
a = [:foo, 'bar', 2] a.values_at(0, 3, 1, 3) # => [:foo, nil, "bar", nil]
Returns a new empty Array if no arguments given.
For each negative index
, counts backward from the end of the array:
a = [:foo, 'bar', 2] a.values_at(-1, -3) # => [2, :foo]
Assigns nil
for an index
that is too small:
a = [:foo, 'bar', 2] a.values_at(0, -5, 1, -6, 2) # => [:foo, nil, "bar", nil, 2]
The given indexes
may have a mixture of signs:
a = [:foo, 'bar', 2] a.values_at(0, -2, 1, -1) # => [:foo, "bar", "bar", 2]
Deletes an element from self
, per the given Integer
index
.
When index
is non-negative, deletes the element at offset index
:
a = [:foo, 'bar', 2] a.delete_at(1) # => "bar" a # => [:foo, 2]
If index is too large, returns nil
.
When index
is negative, counts backward from the end of the array:
a = [:foo, 'bar', 2] a.delete_at(-2) # => "bar" a # => [:foo, 2]
If index
is too small (far from zero), returns nil.
Searches self
as described at method bsearch
, but returns the index of the found element instead of the element itself.
With a block given, forms the substrings (“lines”) that are the result of splitting self
at each occurrence of the given line separator line_sep
; passes each line to the block; returns self
:
s = <<~EOT This is the first line. This is line two. This is line four. This is line five. EOT s.each_line {|line| p line }
Output:
"This is the first line.\n" "This is line two.\n" "\n" "This is line four.\n" "This is line five.\n"
With a different line_sep
:
s.each_line(' is ') {|line| p line }
Output:
"This is " "the first line.\nThis is " "line two.\n\nThis is " "line four.\nThis is " "line five.\n"
With chomp
as true
, removes the trailing line_sep
from each line:
s.each_line(chomp: true) {|line| p line }
Output:
"This is the first line." "This is line two." "" "This is line four." "This is line five."
With an empty string as line_sep
, forms and passes “paragraphs” by splitting at each occurrence of two or more newlines:
s.each_line('') {|line| p line }
Output:
"This is the first line.\nThis is line two.\n\n" "This is line four.\nThis is line five.\n"
With no block given, returns an enumerator.
Calls the given block with each successive byte from self
; returns self
:
'hello'.each_byte {|byte| print byte, ' ' } print "\n" 'тест'.each_byte {|byte| print byte, ' ' } print "\n" 'こんにちは'.each_byte {|byte| print byte, ' ' } print "\n"
Output:
104 101 108 108 111 209 130 208 181 209 129 209 130 227 129 147 227 130 147 227 129 171 227 129 161 227 129 175
Returns an enumerator if no block is given.
Calls the given block with each successive codepoint from self
; each codepoint is the integer value for a character; returns self
:
'hello'.each_codepoint {|codepoint| print codepoint, ' ' } print "\n" 'тест'.each_codepoint {|codepoint| print codepoint, ' ' } print "\n" 'こんにちは'.each_codepoint {|codepoint| print codepoint, ' ' } print "\n"
Output:
104 101 108 108 111 1090 1077 1089 1090 12371 12435 12395 12385 12399
Returns an enumerator if no block is given.
Returns a copy of self
with Unicode normalization applied.
Argument form
must be one of the following symbols (see Unicode normalization forms):
:nfc
: Canonical decomposition, followed by canonical composition.
:nfd
: Canonical decomposition.
:nfkc
: Compatibility decomposition, followed by canonical composition.
:nfkd
: Compatibility decomposition.
The encoding of self
must be one of:
Encoding::UTF_8
Encoding::UTF_16BE
Encoding::UTF_16LE
Encoding::UTF_32BE
Encoding::UTF_32LE
Encoding::GB18030
Encoding::UCS_2BE
Encoding::UCS_4BE
Examples:
"a\u0300".unicode_normalize # => "a" "\u00E0".unicode_normalize(:nfd) # => "a "
Related: String#unicode_normalize!
, String#unicode_normalized?
.
Like String#unicode_normalize
, except that the normalization is performed on self
.
Related String#unicode_normalized?
.
Returns true
if self
is in the given form
of Unicode normalization, false
otherwise. The form
must be one of :nfc
, :nfd
, :nfkc
, or :nfkd
.
Examples:
"a\u0300".unicode_normalized? # => false "a\u0300".unicode_normalized?(:nfd) # => true "\u00E0".unicode_normalized? # => true "\u00E0".unicode_normalized?(:nfd) # => false
Raises an exception if self
is not in a Unicode encoding:
s = "\xE0".force_encoding('ISO-8859-1') s.unicode_normalized? # Raises Encoding::CompatibilityError.
Related: String#unicode_normalize
, String#unicode_normalize!
.
Returns the next-larger representable Float.
These examples show the internally stored values (64-bit hexadecimal) for each Float f
and for the corresponding f.next_float
:
f = 0.0 # 0x0000000000000000 f.next_float # 0x0000000000000001 f = 0.01 # 0x3f847ae147ae147b f.next_float # 0x3f847ae147ae147c
In the remaining examples here, the output is shown in the usual way (result to_s
):
0.01.next_float # => 0.010000000000000002 1.0.next_float # => 1.0000000000000002 100.0.next_float # => 100.00000000000001 f = 0.01 (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.next_float }
Output:
0 0x1.47ae147ae147bp-7 0.01 1 0x1.47ae147ae147cp-7 0.010000000000000002 2 0x1.47ae147ae147dp-7 0.010000000000000004 3 0x1.47ae147ae147ep-7 0.010000000000000005 f = 0.0; 100.times { f += 0.1 } f # => 9.99999999999998 # should be 10.0 in the ideal world. 10-f # => 1.9539925233402755e-14 # the floating point error. 10.0.next_float-10 # => 1.7763568394002505e-15 # 1 ulp (unit in the last place). (10-f)/(10.0.next_float-10) # => 11.0 # the error is 11 ulp. (10-f)/(10*Float::EPSILON) # => 8.8 # approximation of the above. "%a" % 10 # => "0x1.4p+3" "%a" % f # => "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
Related: Float#prev_float
Returns the next-smaller representable Float.
These examples show the internally stored values (64-bit hexadecimal) for each Float f
and for the corresponding f.pev_float
:
f = 5e-324 # 0x0000000000000001 f.prev_float # 0x0000000000000000 f = 0.01 # 0x3f847ae147ae147b f.prev_float # 0x3f847ae147ae147a
In the remaining examples here, the output is shown in the usual way (result to_s
):
0.01.prev_float # => 0.009999999999999998 1.0.prev_float # => 0.9999999999999999 100.0.prev_float # => 99.99999999999999 f = 0.01 (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.prev_float }
Output:
0 0x1.47ae147ae147bp-7 0.01 1 0x1.47ae147ae147ap-7 0.009999999999999998 2 0x1.47ae147ae1479p-7 0.009999999999999997 3 0x1.47ae147ae1478p-7 0.009999999999999995
Related: Float#next_float
.
Like backtrace
, but returns each line of the execution stack as a Thread::Backtrace::Location
. Accepts the same arguments as backtrace
.
f = Fiber.new { Fiber.yield } f.resume loc = f.backtrace_locations.first loc.label #=> "yield" loc.path #=> "test.rb" loc.lineno #=> 1
Sets the Fiber
scheduler for the current thread. If the scheduler is set, non-blocking fibers (created by Fiber.new
with blocking: false
, or by Fiber.schedule
) call that scheduler’s hook methods on potentially blocking operations, and the current thread will call scheduler’s close
method on finalization (allowing the scheduler to properly manage all non-finished fibers).
scheduler
can be an object of any class corresponding to Fiber::Scheduler
. Its implementation is up to the user.
See also the “Non-blocking fibers” section in class docs.
Returns the Fiber
scheduler, that was last set for the current thread with Fiber.set_scheduler
if and only if the current fiber is non-blocking.
Returns the dirpath
string that was used to create self
(or nil
if created by method Dir.for_fd
):
Dir.new('example').path # => "example"
Converts a pathname to an absolute pathname. Relative paths are referenced from the current working directory of the process unless dir_string
is given, in which case it will be used as the starting point. The given pathname may start with a “~
”, which expands to the process owner’s home directory (the environment variable HOME
must be set correctly). “~
user” expands to the named user’s home directory.
File.expand_path("~oracle/bin") #=> "/home/oracle/bin"
A simple example of using dir_string
is as follows.
File.expand_path("ruby", "/usr/bin") #=> "/usr/bin/ruby"
A more complex example which also resolves parent directory is as follows. Suppose we are in bin/mygem and want the absolute path of lib/mygem.rb.
File.expand_path("../../lib/mygem.rb", __FILE__) #=> ".../path/to/project/lib/mygem.rb"
So first it resolves the parent of __FILE__, that is bin/, then go to the parent, the root of the project and appends lib/mygem.rb
.
Converts a pathname to an absolute pathname. Relative paths are referenced from the current working directory of the process unless dir_string is given, in which case it will be used as the starting point. If the given pathname starts with a “~
” it is NOT expanded, it is treated as a normal directory name.
File.absolute_path("~oracle/bin") #=> "<relative_path>/~oracle/bin"
Returns true
if file_name
is an absolute path, and false
otherwise.
File.absolute_path?("c:/foo") #=> false (on Linux), true (on Windows)
Returns whether ASCII-compatible or not.
Encoding::UTF_8.ascii_compatible? #=> true Encoding::UTF_16BE.ascii_compatible? #=> false
Returns the list of private methods accessible to obj. If the all parameter is set to false
, only those methods in the receiver will be listed.
Returns any backtrace associated with the exception. This method is similar to Exception#backtrace
, but the backtrace is an array of Thread::Backtrace::Location
.
This method is not affected by Exception#set_backtrace()
.
Return true if the caused method was called as private.