Results for: "to_proc"

Ractor is an Actor-model abstraction for Ruby that provides thread-safe parallel execution.

Ractor.new makes a new Ractor, which can run in parallel.

# The simplest ractor
r = Ractor.new {puts "I am in Ractor!"}
r.take # wait for it to finish
# Here, "I am in Ractor!" is printed

Ractors do not share all objects with each other. There are two main benefits to this: across ractors, thread-safety concerns such as data-races and race-conditions are not possible. The other benefit is parallelism.

To achieve this, object sharing is limited across ractors. For example, unlike in threads, ractors can’t access all the objects available in other ractors. Even objects normally available through variables in the outer scope are prohibited from being used across ractors.

a = 1
r = Ractor.new {puts "I am in Ractor! a=#{a}"}
# fails immediately with
# ArgumentError (can not isolate a Proc because it accesses outer variables (a).)

The object must be explicitly shared:

a = 1
r = Ractor.new(a) { |a1| puts "I am in Ractor! a=#{a1}"}

On CRuby (the default implementation), Global Virtual Machine Lock (GVL) is held per ractor, so ractors can perform in parallel without locking each other. This is unlike the situation with threads on CRuby.

Instead of accessing shared state, objects should be passed to and from ractors by sending and receiving them as messages.

a = 1
r = Ractor.new do
  a_in_ractor = receive # receive blocks until somebody passes a message
  puts "I am in Ractor! a=#{a_in_ractor}"
end
r.send(a)  # pass it
r.take
# Here, "I am in Ractor! a=1" is printed

There are two pairs of methods for sending/receiving messages:

In addition to that, any arguments passed to Ractor.new are passed to the block and available there as if received by Ractor.receive, and the last block value is sent outside of the ractor as if sent by Ractor.yield.

A little demonstration of a classic ping-pong:

server = Ractor.new(name: "server") do
  puts "Server starts: #{self.inspect}"
  puts "Server sends: ping"
  Ractor.yield 'ping'                       # The server doesn't know the receiver and sends to whoever interested
  received = Ractor.receive                 # The server doesn't know the sender and receives from whoever sent
  puts "Server received: #{received}"
end

client = Ractor.new(server) do |srv|        # The server is sent to the client, and available as srv
  puts "Client starts: #{self.inspect}"
  received = srv.take                       # The client takes a message from the server
  puts "Client received from " \
       "#{srv.inspect}: #{received}"
  puts "Client sends to " \
       "#{srv.inspect}: pong"
  srv.send 'pong'                           # The client sends a message to the server
end

[client, server].each(&:take)               # Wait until they both finish

This will output something like:

Server starts: #<Ractor:#2 server test.rb:1 running>
Server sends: ping
Client starts: #<Ractor:#3 test.rb:8 running>
Client received from #<Ractor:#2 server test.rb:1 blocking>: ping
Client sends to #<Ractor:#2 server test.rb:1 blocking>: pong
Server received: pong

Ractors receive their messages via the incoming port, and send them to the outgoing port. Either one can be disabled with Ractor#close_incoming and Ractor#close_outgoing, respectively. When a ractor terminates, its ports are closed automatically.

Shareable and unshareable objects

When an object is sent to and from a ractor, it’s important to understand whether the object is shareable or unshareable. Most Ruby objects are unshareable objects. Even frozen objects can be unshareable if they contain (through their instance variables) unfrozen objects.

Shareable objects are those which can be used by several threads without compromising thread-safety, for example numbers, true and false. Ractor.shareable? allows you to check this, and Ractor.make_shareable tries to make the object shareable if it’s not already, and gives an error if it can’t do it.

Ractor.shareable?(1)            #=> true -- numbers and other immutable basic values are shareable
Ractor.shareable?('foo')        #=> false, unless the string is frozen due to # frozen_string_literal: true
Ractor.shareable?('foo'.freeze) #=> true
Ractor.shareable?([Object.new].freeze) #=> false, inner object is unfrozen

ary = ['hello', 'world']
ary.frozen?                 #=> false
ary[0].frozen?              #=> false
Ractor.make_shareable(ary)
ary.frozen?                 #=> true
ary[0].frozen?              #=> true
ary[1].frozen?              #=> true

When a shareable object is sent (via send or Ractor.yield), no additional processing occurs on it. It just becomes usable by both ractors. When an unshareable object is sent, it can be either copied or moved. The first is the default, and it copies the object fully by deep cloning (Object#clone) the non-shareable parts of its structure.

data = ['foo', 'bar'.freeze]
r = Ractor.new do
  data2 = Ractor.receive
  puts "In ractor: #{data2.object_id}, #{data2[0].object_id}, #{data2[1].object_id}"
end
r.send(data)
r.take
puts "Outside  : #{data.object_id}, #{data[0].object_id}, #{data[1].object_id}"

This will output something like:

In ractor: 340, 360, 320
Outside  : 380, 400, 320

Note that the object ids of the array and the non-frozen string inside the array have changed in the ractor because they are different objects. The second array’s element, which is a shareable frozen string, is the same object.

Deep cloning of objects may be slow, and sometimes impossible. Alternatively, move: true may be used during sending. This will move the unshareable object to the receiving ractor, making it inaccessible to the sending ractor.

data = ['foo', 'bar']
r = Ractor.new do
  data_in_ractor = Ractor.receive
  puts "In ractor: #{data_in_ractor.object_id}, #{data_in_ractor[0].object_id}"
end
r.send(data, move: true)
r.take
puts "Outside: moved? #{Ractor::MovedObject === data}"
puts "Outside: #{data.inspect}"

This will output:

In ractor: 100, 120
Outside: moved? true
test.rb:9:in `method_missing': can not send any methods to a moved object (Ractor::MovedError)

Notice that even inspect (and more basic methods like __id__) is inaccessible on a moved object.

Class and Module objects are shareable so the class/module definitions are shared between ractors. Ractor objects are also shareable. All operations on shareable objects are thread-safe, so the thread-safety property will be kept. We can not define mutable shareable objects in Ruby, but C extensions can introduce them.

It is prohibited to access (get) instance variables of shareable objects in other ractors if the values of the variables aren’t shareable. This can occur because modules/classes are shareable, but they can have instance variables whose values are not. In non-main ractors, it’s also prohibited to set instance variables on classes/modules (even if the value is shareable).

class C
  class << self
    attr_accessor :tricky
  end
end

C.tricky = "unshareable".dup

r = Ractor.new(C) do |cls|
  puts "I see #{cls}"
  puts "I can't see #{cls.tricky}"
  cls.tricky = true # doesn't get here, but this would also raise an error
end
r.take
# I see C
# can not access instance variables of classes/modules from non-main Ractors (RuntimeError)

Ractors can access constants if they are shareable. The main Ractor is the only one that can access non-shareable constants.

GOOD = 'good'.freeze
BAD = 'bad'.dup

r = Ractor.new do
  puts "GOOD=#{GOOD}"
  puts "BAD=#{BAD}"
end
r.take
# GOOD=good
# can not access non-shareable objects in constant Object::BAD by non-main Ractor. (NameError)

# Consider the same C class from above

r = Ractor.new do
  puts "I see #{C}"
  puts "I can't see #{C.tricky}"
end
r.take
# I see C
# can not access instance variables of classes/modules from non-main Ractors (RuntimeError)

See also the description of # shareable_constant_value pragma in Comments syntax explanation.

Ractors vs threads

Each ractor has its own main Thread. New threads can be created from inside ractors (and, on CRuby, they share the GVL with other threads of this ractor).

r = Ractor.new do
  a = 1
  Thread.new {puts "Thread in ractor: a=#{a}"}.join
end
r.take
# Here "Thread in ractor: a=1" will be printed

Note on code examples

In the examples below, sometimes we use the following method to wait for ractors that are not currently blocked to finish (or to make progress).

def wait
  sleep(0.1)
end

It is **only for demonstration purposes** and shouldn’t be used in a real code. Most of the time, take is used to wait for ractors to finish.

Reference

See Ractor design doc for more details.

newton.rb

Solves the nonlinear algebraic equation system f = 0 by Newton’s method. This program is not dependent on BigDecimal.

To call:

  n = nlsolve(f,x)
where n is the number of iterations required,
      x is the initial value vector
      f is an Object which is used to compute the values of the equations to be solved.

It must provide the following methods:

f.values(x)

returns the values of all functions at x

f.zero

returns 0.0

f.one

returns 1.0

f.two

returns 2.0

f.ten

returns 10.0

f.eps

returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.

On exit, x is the solution vector.

In concurrent programming, a monitor is an object or module intended to be used safely by more than one thread. The defining characteristic of a monitor is that its methods are executed with mutual exclusion. That is, at each point in time, at most one thread may be executing any of its methods. This mutual exclusion greatly simplifies reasoning about the implementation of monitors compared to reasoning about parallel code that updates a data structure.

You can read more about the general principles on the Wikipedia page for Monitors.

Examples

Simple object.extend

require 'monitor.rb'

buf = []
buf.extend(MonitorMixin)
empty_cond = buf.new_cond

# consumer
Thread.start do
  loop do
    buf.synchronize do
      empty_cond.wait_while { buf.empty? }
      print buf.shift
    end
  end
end

# producer
while line = ARGF.gets
  buf.synchronize do
    buf.push(line)
    empty_cond.signal
  end
end

The consumer thread waits for the producer thread to push a line to buf while buf.empty?. The producer thread (main thread) reads a line from ARGF and pushes it into buf then calls empty_cond.signal to notify the consumer thread of new data.

Simple Class include

require 'monitor'

class SynchronizedArray < Array

  include MonitorMixin

  def initialize(*args)
    super(*args)
  end

  alias :old_shift :shift
  alias :old_unshift :unshift

  def shift(n=1)
    self.synchronize do
      self.old_shift(n)
    end
  end

  def unshift(item)
    self.synchronize do
      self.old_unshift(item)
    end
  end

  # other methods ...
end

SynchronizedArray implements an Array with synchronized access to items. This Class is implemented as subclass of Array which includes the MonitorMixin module.

The Singleton module implements the Singleton pattern.

Usage

To use Singleton, include the module in your class.

class Klass
   include Singleton
   # ...
end

This ensures that only one instance of Klass can be created.

a,b = Klass.instance, Klass.instance

a == b
# => true

Klass.new
# => NoMethodError - new is private ...

The instance is created at upon the first call of Klass.instance().

class OtherKlass
  include Singleton
  # ...
end

ObjectSpace.each_object(OtherKlass){}
# => 0

OtherKlass.instance
ObjectSpace.each_object(OtherKlass){}
# => 1

This behavior is preserved under inheritance and cloning.

Implementation

This above is achieved by:

Singleton and Marshal

By default Singleton’s _dump(depth) returns the empty string. Marshalling by default will strip state information, e.g. instance variables from the instance. Classes using Singleton can provide custom _load(str) and _dump(depth) methods to retain some of the previous state of the instance.

require 'singleton'

class Example
  include Singleton
  attr_accessor :keep, :strip
  def _dump(depth)
    # this strips the @strip information from the instance
    Marshal.dump(@keep, depth)
  end

  def self._load(str)
    instance.keep = Marshal.load(str)
    instance
  end
end

a = Example.instance
a.keep = "keep this"
a.strip = "get rid of this"

stored_state = Marshal.dump(a)

a.keep = nil
a.strip = nil
b = Marshal.load(stored_state)
p a == b  #  => true
p a.keep  #  => "keep this"
p a.strip #  => nil

Adds this spec’s require paths to LOAD_PATH, in the proper location.

Reset nil attributes to their default values to make the spec valid

for settings’ keys

Raised by Encoding and String methods when the source encoding is incompatible with the target encoding.

Exception for invalid date/time

Group is a placeholder Struct for user group database on Unix systems.

The struct contains the following members

name

contains the name of the group as a String.

passwd

contains the encrypted password as a String. An 'x' is returned if password access to the group is not available; an empty string is returned if no password is needed to obtain membership of the group. This is system-dependent.

gid

contains the group’s numeric ID as an integer.

mem

is an Array of Strings containing the short login names of the members of the group.

Generic error class for Fiddle

standard dynamic load exception

Cleared reference exception

The base exception for JSON errors.

This exception is raised if a parser error occurs.

This exception is raised if the nesting of parsed data structures is too deep.

Generic error, common for all classes under OpenSSL module

Generic Error for all of OpenSSL::BN (big num)

General error for openssl library configuration files. Including formatting, parsing errors, etc.

Document-class: OpenSSL::HMAC

OpenSSL::HMAC allows computing Hash-based Message Authentication Code (HMAC). It is a type of message authentication code (MAC) involving a hash function in combination with a key. HMAC can be used to verify the integrity of a message as well as the authenticity.

OpenSSL::HMAC has a similar interface to OpenSSL::Digest.

HMAC-SHA256 using one-shot interface

key = "key"
data = "message-to-be-authenticated"
mac = OpenSSL::HMAC.hexdigest("SHA256", key, data)
#=> "cddb0db23f469c8bf072b21fd837149bd6ace9ab771cceef14c9e517cc93282e"

HMAC-SHA256 using incremental interface

data1 = File.binread("file1")
data2 = File.binread("file2")
key = "key"
hmac = OpenSSL::HMAC.new(key, 'SHA256')
hmac << data1
hmac << data2
mac = hmac.digest
No documentation available

ResolutionError is the error class for socket name resolution.

No documentation available

The superclass for all exceptions raised by Ruby/zlib.

The following exceptions are defined as subclasses of Zlib::Error. These exceptions are raised when zlib library functions return with an error status.

Subclass of Zlib::Error when zlib returns a Z_DATA_ERROR.

Usually if a stream was prematurely freed.

Search took: 5ms  ·  Total Results: 1894