Results for: "partition"

No documentation available
No documentation available
No documentation available

@param [Array<Object>] binding_requirements array of requirements that combine to create a conflict @return [Array<UnwindDetails>] array of UnwindDetails that have a chance

of resolving the passed requirements

(see Gem::Resolver::Molinillo::ResolutionState#activated)

Creates and pushes the initial state for the resolution, based upon the {#requested} dependencies @return [void]

@param [Object] possibility a single possibility @param [Array] requirements an array of requirements @return [Boolean] whether the possibility satisfies all of the

given requirements

Checks a proposed requirement with any existing locked requirement before generating an array of possibilities for it. @param [Object] requirement the proposed requirement @param [Object] activated @return [Array] possibilities

Filter’s a state’s possibilities to remove any that would not satisfy the requirements in the conflict we’ve just rewound from @param [UnwindDetails] unwind_details details of the conflict just unwound from @return [void]

Returns self.

Sorts the elements of self in place, using an ordering determined by the block; returns self.

Calls the block with each successive element; sorts elements based on the values returned from the block.

For duplicates returned by the block, the ordering is indeterminate, and may be unstable.

This example sorts strings based on their sizes:

a = ['aaaa', 'bbb', 'cc', 'd']
a.sort_by! {|element| element.size }
a # => ["d", "cc", "bbb", "aaaa"]

Returns a new Enumerator if no block given:

a = ['aaaa', 'bbb', 'cc', 'd']
a.sort_by! # => #<Enumerator: ["aaaa", "bbb", "cc", "d"]:sort_by!>

Searches self as described at method bsearch, but returns the index of the found element instead of the element itself.

Returns the number of bits of the value of int.

“Number of bits” means the bit position of the highest bit which is different from the sign bit (where the least significant bit has bit position 1). If there is no such bit (zero or minus one), zero is returned.

I.e. this method returns ceil(log2(int < 0 ? -int : int+1)).

(-2**1000-1).bit_length   #=> 1001
(-2**1000).bit_length     #=> 1000
(-2**1000+1).bit_length   #=> 1000
(-2**12-1).bit_length     #=> 13
(-2**12).bit_length       #=> 12
(-2**12+1).bit_length     #=> 12
-0x101.bit_length         #=> 9
-0x100.bit_length         #=> 8
-0xff.bit_length          #=> 8
-2.bit_length             #=> 1
-1.bit_length             #=> 0
0.bit_length              #=> 0
1.bit_length              #=> 1
0xff.bit_length           #=> 8
0x100.bit_length          #=> 9
(2**12-1).bit_length      #=> 12
(2**12).bit_length        #=> 13
(2**12+1).bit_length      #=> 13
(2**1000-1).bit_length    #=> 1000
(2**1000).bit_length      #=> 1001
(2**1000+1).bit_length    #=> 1001

This method can be used to detect overflow in Array#pack as follows:

if n.bit_length < 32
  [n].pack("l") # no overflow
else
  raise "overflow"
end

Imports methods from modules. Unlike Module#include, Refinement#import_methods copies methods and adds them into the refinement, so the refinement is activated in the imported methods.

Note that due to method copying, only methods defined in Ruby code can be imported.

module StrUtils
  def indent(level)
    ' ' * level + self
  end
end

module M
  refine String do
    import_methods StrUtils
  end
end

using M
"foo".indent(3)
#=> "   foo"

module M
  refine String do
    import_methods Enumerable
    # Can't import method which is not defined with Ruby code: Enumerable#drop
  end
end

Deserializes JSON string by converting Real value r, imaginary value i, to a Complex object.

Returns a hash, that will be turned into a JSON object and represent this object.

Stores class name (Complex) along with real value r and imaginary value i as JSON string

Returns whether self ends with any of the given strings.

Returns true if any given string matches the end, false otherwise:

'hello'.end_with?('ello')               #=> true
'hello'.end_with?('heaven', 'ello')     #=> true
'hello'.end_with?('heaven', 'paradise') #=> false
'тест'.end_with?('т')                   # => true
'こんにちは'.end_with?('は')              # => true

Related: String#start_with?.

Calls the given block with each successive character from self; returns self:

'hello'.each_char {|char| print char, ' ' }
print "\n"
'тест'.each_char {|char| print char, ' ' }
print "\n"
'こんにちは'.each_char {|char| print char, ' ' }
print "\n"

Output:

h e l l o
т е с т
    

Returns an enumerator if no block is given.

Returns true if self contains only ASCII characters, false otherwise:

'abc'.ascii_only?         # => true
"abc\u{6666}".ascii_only? # => false

Returns the path parameter passed to dir’s constructor.

d = Dir.new("..")
d.path   #=> ".."

Converts a pathname to an absolute pathname. Relative paths are referenced from the current working directory of the process unless dir_string is given, in which case it will be used as the starting point. If the given pathname starts with a “~” it is NOT expanded, it is treated as a normal directory name.

File.absolute_path("~oracle/bin")       #=> "<relative_path>/~oracle/bin"

Returns true if file_name is an absolute path, and false otherwise.

File.absolute_path?("c:/foo")     #=> false (on Linux), true (on Windows)

Returns true if the named file is writable by the real user and group id of this process. See access(3).

Note that some OS-level security features may cause this to return true even though the file is not writable by the real user/group.

If file_name is writable by others, returns an integer representing the file permission bits of file_name. Returns nil otherwise. The meaning of the bits is platform dependent; on Unix systems, see stat(2).

file_name can be an IO object.

File.world_writable?("/tmp")                  #=> 511
m = File.world_writable?("/tmp")
sprintf("%o", m)                              #=> "777"
Search took: 5ms  ·  Total Results: 2657