Results for: "OptionParser"

Returns event interface name if the method is event.

tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'Workbook')
method = WIN32OLE_METHOD.new(tobj, 'SheetActivate')
puts method.event_interface # =>  WorkbookEvents

Returns the offset ov VTBL.

tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'Workbooks')
method = WIN32OLE_METHOD.new(tobj, 'Add')
puts method.offset_vtbl # => 40

Returns array of WIN32OLE_TYPE objects defined by the typelib type library. This method will be OBSOLETE. Use WIN32OLE_TYPELIB.new(typelib).ole_classes instead.

Returns library name. If the method fails to access library name, WIN32OLERuntimeError is raised.

tlib = WIN32OLE_TYPELIB.new('Microsoft Excel 9.0 Object Library')
tlib.library_name # => Excel

Returns the type library file path.

tlib = WIN32OLE_TYPELIB.new('Microsoft Excel 9.0 Object Library')
classes = tlib.ole_types.collect{|k| k.name} # -> ['AddIn', 'AddIns' ...]

Returns variable kind string.

tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'XlSheetType')
variables = tobj.variables
variables.each do |variable|
  puts "#{variable.name} #{variable.variable_kind}"
end

The result of above script is following:
  xlChart CONSTANT
  xlDialogSheet CONSTANT
  xlExcel4IntlMacroSheet CONSTANT
  xlExcel4MacroSheet CONSTANT
  xlWorksheet CONSTANT

Same as IO.

See Zlib::GzipReader documentation for a description.

See Zlib::GzipReader documentation for a description.

Iterates over keys and objects in a weakly referenced object

Write to a buffer a value of type at offset. type should be one of symbols described in get_value.

buffer = IO::Buffer.new(8)
# =>
# #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL>
# 0x00000000  00 00 00 00 00 00 00 00

buffer.set_value(:U8, 1, 111)
# => 1

buffer
# =>
# #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL>
# 0x00000000  00 6f 00 00 00 00 00 00                         .o......

Note that if the type is integer and value is Float, the implicit truncation is performed:

buffer = IO::Buffer.new(8)
buffer.set_value(:U32, 0, 2.5)

buffer
# =>
# #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL>
# 0x00000000  00 00 00 02 00 00 00 00
#                      ^^ the same as if we'd pass just integer 2

Write values of data_types at offset to the buffer. data_types should be an array of symbols as described in get_value. values should be an array of values to write.

Example:

buffer = IO::Buffer.new(8)
buffer.set_values([:U8, :U16], 0, [1, 2])
buffer
# =>
# #<IO::Buffer 0x696f717561746978+8 INTERNAL>
# 0x00000000  01 00 02 00 00 00 00 00                         ........

Efficiently copy data from a source String into the buffer, at offset using memcpy.

buf = IO::Buffer.new(8)
# =>
# #<IO::Buffer 0x0000557412714a20+8 INTERNAL>
# 0x00000000  00 00 00 00 00 00 00 00                         ........

# set data starting from offset 1, take 2 bytes starting from string's
# second
buf.set_string('test', 1, 2, 1)
# => 2
buf
# =>
# #<IO::Buffer 0x0000557412714a20+8 INTERNAL>
# 0x00000000  00 65 73 00 00 00 00 00                         .es.....

See also copy for examples of how buffer writing might be used for changing associated strings and files.

Returns serialized iseq binary format data as a String object. A corresponding iseq object is created by RubyVM::InstructionSequence.load_from_binary() method.

String extra_data will be saved with binary data. You can access this data with RubyVM::InstructionSequence.load_from_binary_extra_data(binary).

Note that the translated binary data is not portable. You can not move this binary data to another machine. You can not use the binary data which is created by another version/another architecture of Ruby.

Returns the absolute path of this instruction sequence.

nil if the iseq was evaluated from a string.

For example, using ::compile_file:

# /tmp/method.rb
def hello
  puts "hello, world"
end

# in irb
> iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb')
> iseq.absolute_path #=> /tmp/method.rb

Returns the base label of this instruction sequence.

For example, using irb:

iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
#=> <RubyVM::InstructionSequence:<compiled>@<compiled>>
iseq.base_label
#=> "<compiled>"

Using ::compile_file:

# /tmp/method.rb
def hello
  puts "hello, world"
end

# in irb
> iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb')
> iseq.base_label #=> <main>

Returns the number of the first source line where the instruction sequence was loaded from.

For example, using irb:

iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
#=> <RubyVM::InstructionSequence:<compiled>@<compiled>>
iseq.first_lineno
#=> 1

It returns recorded script lines if it is availalble. The script lines are not limited to the iseq range, but are entire lines of the source file.

Note that this is an API for ruby internal use, debugging, and research. Do not use this for any other purpose. The compatibility is not guaranteed.

No documentation available
No documentation available
No documentation available

Returns true if this is a header row, false otherwise.

No documentation available

Returns the new Hash suitable for pattern matching containing only the keys specified as an argument.

No documentation available
Search took: 7ms  ·  Total Results: 3967