Implementation of an X.509 certificate as specified in RFC 5280. Provides access to a certificate’s attributes and allows certificates to be read from a string, but also supports the creation of new certificates from scratch.
Reading a certificate from a file
Certificate
is capable of handling DER-encoded certificates and certificates encoded in OpenSSL’s PEM format.
raw = File.binread "cert.cer" # DER- or PEM-encoded certificate = OpenSSL::X509::Certificate.new raw
Saving a certificate to a file
A certificate may be encoded in DER format
cert = ... File.open("cert.cer", "wb") { |f| f.print cert.to_der }
or in PEM format
cert = ... File.open("cert.pem", "wb") { |f| f.print cert.to_pem }
X.509 certificates are associated with a private/public key pair, typically a RSA, DSA or ECC key (see also OpenSSL::PKey::RSA
, OpenSSL::PKey::DSA
and OpenSSL::PKey::EC
), the public key itself is stored within the certificate and can be accessed in form of an OpenSSL::PKey
. Certificates are typically used to be able to associate some form of identity with a key pair, for example web servers serving pages over HTTPs use certificates to authenticate themselves to the user.
The public key infrastructure (PKI) model relies on trusted certificate authorities (“root CAs”) that issue these certificates, so that end users need to base their trust just on a selected few authorities that themselves again vouch for subordinate CAs issuing their certificates to end users.
The OpenSSL::X509
module provides the tools to set up an independent PKI, similar to scenarios where the ‘openssl’ command line tool is used for issuing certificates in a private PKI.
Creating a root CA certificate and an end-entity certificate
First, we need to create a “self-signed” root certificate. To do so, we need to generate a key first. Please note that the choice of “1” as a serial number is considered a security flaw for real certificates. Secure choices are integers in the two-digit byte range and ideally not sequential but secure random numbers, steps omitted here to keep the example concise.
root_key = OpenSSL::PKey::RSA.new 2048 # the CA's public/private key root_ca = OpenSSL::X509::Certificate.new root_ca.version = 2 # cf. RFC 5280 - to make it a "v3" certificate root_ca.serial = 1 root_ca.subject = OpenSSL::X509::Name.parse "/DC=org/DC=ruby-lang/CN=Ruby CA" root_ca.issuer = root_ca.subject # root CA's are "self-signed" root_ca.public_key = root_key.public_key root_ca.not_before = Time.now root_ca.not_after = root_ca.not_before + 2 * 365 * 24 * 60 * 60 # 2 years validity ef = OpenSSL::X509::ExtensionFactory.new ef.subject_certificate = root_ca ef.issuer_certificate = root_ca root_ca.add_extension(ef.create_extension("basicConstraints","CA:TRUE",true)) root_ca.add_extension(ef.create_extension("keyUsage","keyCertSign, cRLSign", true)) root_ca.add_extension(ef.create_extension("subjectKeyIdentifier","hash",false)) root_ca.add_extension(ef.create_extension("authorityKeyIdentifier","keyid:always",false)) root_ca.sign(root_key, OpenSSL::Digest.new('SHA256'))
The next step is to create the end-entity certificate using the root CA certificate.
key = OpenSSL::PKey::RSA.new 2048 cert = OpenSSL::X509::Certificate.new cert.version = 2 cert.serial = 2 cert.subject = OpenSSL::X509::Name.parse "/DC=org/DC=ruby-lang/CN=Ruby certificate" cert.issuer = root_ca.subject # root CA is the issuer cert.public_key = key.public_key cert.not_before = Time.now cert.not_after = cert.not_before + 1 * 365 * 24 * 60 * 60 # 1 years validity ef = OpenSSL::X509::ExtensionFactory.new ef.subject_certificate = cert ef.issuer_certificate = root_ca cert.add_extension(ef.create_extension("keyUsage","digitalSignature", true)) cert.add_extension(ef.create_extension("subjectKeyIdentifier","hash",false)) cert.sign(root_key, OpenSSL::Digest.new('SHA256'))
static VALUE
ossl_x509_load(VALUE klass, VALUE buffer)
{
BIO *in = ossl_obj2bio(&buffer);
return rb_ensure(load_chained_certificates, (VALUE)in, load_chained_certificates_ensure, (VALUE)in);
}
Read the chained certificates from the given input. Supports both PEM and DER encoded certificates.
PEM is a text format and supports more than one certificate.
DER is a binary format and only supports one certificate.
If the file is empty, or contains only unrelated data, an OpenSSL::X509::CertificateError
exception will be raised.
# File tmp/rubies/ruby-3.2.0/ext/openssl/lib/openssl/x509.rb, line 360
def self.load_file(path)
load(File.binread(path))
end
static VALUE
ossl_x509_initialize(int argc, VALUE *argv, VALUE self)
{
BIO *in;
X509 *x509, *x509_orig = RTYPEDDATA_DATA(self);
VALUE arg;
rb_check_frozen(self);
if (rb_scan_args(argc, argv, "01", &arg) == 0) {
/* create just empty X509Cert */
return self;
}
arg = ossl_to_der_if_possible(arg);
in = ossl_obj2bio(&arg);
x509 = d2i_X509_bio(in, NULL);
if (!x509) {
OSSL_BIO_reset(in);
x509 = PEM_read_bio_X509(in, NULL, NULL, NULL);
}
BIO_free(in);
if (!x509)
ossl_raise(eX509CertError, "PEM_read_bio_X509");
RTYPEDDATA_DATA(self) = x509;
X509_free(x509_orig);
return self;
}
static VALUE
ossl_x509_eq(VALUE self, VALUE other)
{
X509 *a, *b;
GetX509(self, a);
if (!rb_obj_is_kind_of(other, cX509Cert))
return Qfalse;
GetX509(other, b);
return !X509_cmp(a, b) ? Qtrue : Qfalse;
}
Compares the two certificates. Note that this takes into account all fields, not just the issuer name and the serial number.
static VALUE
ossl_x509_add_extension(VALUE self, VALUE extension)
{
X509 *x509;
X509_EXTENSION *ext;
GetX509(self, x509);
ext = GetX509ExtPtr(extension);
if (!X509_add_ext(x509, ext, -1)) { /* DUPs ext - FREE it */
ossl_raise(eX509CertError, NULL);
}
return extension;
}
static VALUE
ossl_x509_check_private_key(VALUE self, VALUE key)
{
X509 *x509;
EVP_PKEY *pkey;
/* not needed private key, but should be */
pkey = GetPrivPKeyPtr(key); /* NO NEED TO DUP */
GetX509(self, x509);
if (!X509_check_private_key(x509, pkey)) {
ossl_clear_error();
return Qfalse;
}
return Qtrue;
}
Returns true
if key is the corresponding private key to the Subject Public Key Information, false
otherwise.
static VALUE
ossl_x509_get_extensions(VALUE self)
{
X509 *x509;
int count, i;
X509_EXTENSION *ext;
VALUE ary;
GetX509(self, x509);
count = X509_get_ext_count(x509);
if (count < 0) {
return rb_ary_new();
}
ary = rb_ary_new2(count);
for (i=0; i<count; i++) {
ext = X509_get_ext(x509, i); /* NO DUP - don't free! */
rb_ary_push(ary, ossl_x509ext_new(ext));
}
return ary;
}
static VALUE
ossl_x509_set_extensions(VALUE self, VALUE ary)
{
X509 *x509;
X509_EXTENSION *ext;
long i;
Check_Type(ary, T_ARRAY);
/* All ary's members should be X509Extension */
for (i=0; i<RARRAY_LEN(ary); i++) {
OSSL_Check_Kind(RARRAY_AREF(ary, i), cX509Ext);
}
GetX509(self, x509);
for (i = X509_get_ext_count(x509); i > 0; i--)
X509_EXTENSION_free(X509_delete_ext(x509, 0));
for (i=0; i<RARRAY_LEN(ary); i++) {
ext = GetX509ExtPtr(RARRAY_AREF(ary, i));
if (!X509_add_ext(x509, ext, -1)) { /* DUPs ext */
ossl_raise(eX509CertError, "X509_add_ext");
}
}
return ary;
}
static VALUE
ossl_x509_copy(VALUE self, VALUE other)
{
X509 *a, *b, *x509;
rb_check_frozen(self);
if (self == other) return self;
GetX509(self, a);
GetX509(other, b);
x509 = X509_dup(b);
if (!x509) ossl_raise(eX509CertError, NULL);
DATA_PTR(self) = x509;
X509_free(a);
return self;
}
static VALUE
ossl_x509_inspect(VALUE self)
{
return rb_sprintf("#<%"PRIsVALUE": subject=%+"PRIsVALUE", "
"issuer=%+"PRIsVALUE", serial=%+"PRIsVALUE", "
"not_before=%+"PRIsVALUE", not_after=%+"PRIsVALUE">",
rb_obj_class(self),
ossl_x509_get_subject(self),
ossl_x509_get_issuer(self),
ossl_x509_get_serial(self),
ossl_x509_get_not_before(self),
ossl_x509_get_not_after(self));
}
static VALUE
ossl_x509_get_issuer(VALUE self)
{
X509 *x509;
X509_NAME *name;
GetX509(self, x509);
if(!(name = X509_get_issuer_name(x509))) { /* NO DUP - don't free! */
ossl_raise(eX509CertError, NULL);
}
return ossl_x509name_new(name);
}
static VALUE
ossl_x509_set_issuer(VALUE self, VALUE issuer)
{
X509 *x509;
GetX509(self, x509);
if (!X509_set_issuer_name(x509, GetX509NamePtr(issuer))) { /* DUPs name */
ossl_raise(eX509CertError, NULL);
}
return issuer;
}
static VALUE
ossl_x509_get_not_after(VALUE self)
{
X509 *x509;
const ASN1_TIME *asn1time;
GetX509(self, x509);
if (!(asn1time = X509_get0_notAfter(x509))) {
ossl_raise(eX509CertError, NULL);
}
return asn1time_to_time(asn1time);
}
static VALUE
ossl_x509_set_not_after(VALUE self, VALUE time)
{
X509 *x509;
ASN1_TIME *asn1time;
GetX509(self, x509);
asn1time = ossl_x509_time_adjust(NULL, time);
if (!X509_set1_notAfter(x509, asn1time)) {
ASN1_TIME_free(asn1time);
ossl_raise(eX509CertError, "X509_set_notAfter");
}
ASN1_TIME_free(asn1time);
return time;
}
static VALUE
ossl_x509_get_not_before(VALUE self)
{
X509 *x509;
const ASN1_TIME *asn1time;
GetX509(self, x509);
if (!(asn1time = X509_get0_notBefore(x509))) {
ossl_raise(eX509CertError, NULL);
}
return asn1time_to_time(asn1time);
}
static VALUE
ossl_x509_set_not_before(VALUE self, VALUE time)
{
X509 *x509;
ASN1_TIME *asn1time;
GetX509(self, x509);
asn1time = ossl_x509_time_adjust(NULL, time);
if (!X509_set1_notBefore(x509, asn1time)) {
ASN1_TIME_free(asn1time);
ossl_raise(eX509CertError, "X509_set_notBefore");
}
ASN1_TIME_free(asn1time);
return time;
}
# File tmp/rubies/ruby-3.2.0/ext/openssl/lib/openssl/x509.rb, line 349
def pretty_print(q)
q.object_group(self) {
q.breakable
q.text 'subject='; q.pp self.subject; q.text ','; q.breakable
q.text 'issuer='; q.pp self.issuer; q.text ','; q.breakable
q.text 'serial='; q.pp self.serial; q.text ','; q.breakable
q.text 'not_before='; q.pp self.not_before; q.text ','; q.breakable
q.text 'not_after='; q.pp self.not_after
}
end
static VALUE
ossl_x509_get_public_key(VALUE self)
{
X509 *x509;
EVP_PKEY *pkey;
GetX509(self, x509);
if (!(pkey = X509_get_pubkey(x509))) { /* adds an reference */
ossl_raise(eX509CertError, NULL);
}
return ossl_pkey_new(pkey); /* NO DUP - OK */
}
static VALUE
ossl_x509_set_public_key(VALUE self, VALUE key)
{
X509 *x509;
EVP_PKEY *pkey;
GetX509(self, x509);
pkey = GetPKeyPtr(key);
ossl_pkey_check_public_key(pkey);
if (!X509_set_pubkey(x509, pkey))
ossl_raise(eX509CertError, "X509_set_pubkey");
return key;
}
static VALUE
ossl_x509_get_serial(VALUE self)
{
X509 *x509;
GetX509(self, x509);
return asn1integer_to_num(X509_get_serialNumber(x509));
}
static VALUE
ossl_x509_set_serial(VALUE self, VALUE num)
{
X509 *x509;
GetX509(self, x509);
X509_set_serialNumber(x509, num_to_asn1integer(num, X509_get_serialNumber(x509)));
return num;
}
static VALUE
ossl_x509_sign(VALUE self, VALUE key, VALUE digest)
{
X509 *x509;
EVP_PKEY *pkey;
const EVP_MD *md;
pkey = GetPrivPKeyPtr(key); /* NO NEED TO DUP */
md = ossl_evp_get_digestbyname(digest);
GetX509(self, x509);
if (!X509_sign(x509, pkey, md)) {
ossl_raise(eX509CertError, NULL);
}
return self;
}
static VALUE
ossl_x509_get_signature_algorithm(VALUE self)
{
X509 *x509;
BIO *out;
VALUE str;
GetX509(self, x509);
out = BIO_new(BIO_s_mem());
if (!out) ossl_raise(eX509CertError, NULL);
if (!i2a_ASN1_OBJECT(out, X509_get0_tbs_sigalg(x509)->algorithm)) {
BIO_free(out);
ossl_raise(eX509CertError, NULL);
}
str = ossl_membio2str(out);
return str;
}
static VALUE
ossl_x509_get_subject(VALUE self)
{
X509 *x509;
X509_NAME *name;
GetX509(self, x509);
if (!(name = X509_get_subject_name(x509))) { /* NO DUP - don't free! */
ossl_raise(eX509CertError, NULL);
}
return ossl_x509name_new(name);
}
static VALUE
ossl_x509_set_subject(VALUE self, VALUE subject)
{
X509 *x509;
GetX509(self, x509);
if (!X509_set_subject_name(x509, GetX509NamePtr(subject))) { /* DUPs name */
ossl_raise(eX509CertError, NULL);
}
return subject;
}
static VALUE
ossl_x509_to_der(VALUE self)
{
X509 *x509;
VALUE str;
long len;
unsigned char *p;
GetX509(self, x509);
if ((len = i2d_X509(x509, NULL)) <= 0)
ossl_raise(eX509CertError, NULL);
str = rb_str_new(0, len);
p = (unsigned char *)RSTRING_PTR(str);
if (i2d_X509(x509, &p) <= 0)
ossl_raise(eX509CertError, NULL);
ossl_str_adjust(str, p);
return str;
}
static VALUE
ossl_x509_to_pem(VALUE self)
{
X509 *x509;
BIO *out;
VALUE str;
GetX509(self, x509);
out = BIO_new(BIO_s_mem());
if (!out) ossl_raise(eX509CertError, NULL);
if (!PEM_write_bio_X509(out, x509)) {
BIO_free(out);
ossl_raise(eX509CertError, NULL);
}
str = ossl_membio2str(out);
return str;
}
static VALUE
ossl_x509_to_text(VALUE self)
{
X509 *x509;
BIO *out;
VALUE str;
GetX509(self, x509);
out = BIO_new(BIO_s_mem());
if (!out) ossl_raise(eX509CertError, NULL);
if (!X509_print(out, x509)) {
BIO_free(out);
ossl_raise(eX509CertError, NULL);
}
str = ossl_membio2str(out);
return str;
}
static VALUE
ossl_x509_verify(VALUE self, VALUE key)
{
X509 *x509;
EVP_PKEY *pkey;
GetX509(self, x509);
pkey = GetPKeyPtr(key);
ossl_pkey_check_public_key(pkey);
switch (X509_verify(x509, pkey)) {
case 1:
return Qtrue;
case 0:
ossl_clear_error();
return Qfalse;
default:
ossl_raise(eX509CertError, NULL);
}
}
Verifies the signature of the certificate, with the public key key. key must be an instance of OpenSSL::PKey
.
static VALUE
ossl_x509_get_version(VALUE self)
{
X509 *x509;
GetX509(self, x509);
return LONG2NUM(X509_get_version(x509));
}
static VALUE
ossl_x509_set_version(VALUE self, VALUE version)
{
X509 *x509;
long ver;
if ((ver = NUM2LONG(version)) < 0) {
ossl_raise(eX509CertError, "version must be >= 0!");
}
GetX509(self, x509);
if (!X509_set_version(x509, ver)) {
ossl_raise(eX509CertError, NULL);
}
return version;
}