Results for: "uri"

No documentation available

Pseudo I/O on String object, with interface corresponding to IO.

Commonly used to simulate $stdio or $stderr

Examples

require 'stringio'

# Writing stream emulation
io = StringIO.new
io.puts "Hello World"
io.string #=> "Hello World\n"

# Reading stream emulation
io = StringIO.new "first\nsecond\nlast\n"
io.getc #=> "f"
io.gets #=> "irst\n"
io.read #=> "second\nlast\n"

StringScanner provides for lexical scanning operations on a String. Here is an example of its usage:

s = StringScanner.new('This is an example string')
s.eos?               # -> false

p s.scan(/\w+/)      # -> "This"
p s.scan(/\w+/)      # -> nil
p s.scan(/\s+/)      # -> " "
p s.scan(/\s+/)      # -> nil
p s.scan(/\w+/)      # -> "is"
s.eos?               # -> false

p s.scan(/\s+/)      # -> " "
p s.scan(/\w+/)      # -> "an"
p s.scan(/\s+/)      # -> " "
p s.scan(/\w+/)      # -> "example"
p s.scan(/\s+/)      # -> " "
p s.scan(/\w+/)      # -> "string"
s.eos?               # -> true

p s.scan(/\s+/)      # -> nil
p s.scan(/\w+/)      # -> nil

Scanning a string means remembering the position of a scan pointer, which is just an index. The point of scanning is to move forward a bit at a time, so matches are sought after the scan pointer; usually immediately after it.

Given the string “test string”, here are the pertinent scan pointer positions:

  t e s t   s t r i n g
0 1 2 ...             1
                      0

When you scan for a pattern (a regular expression), the match must occur at the character after the scan pointer. If you use scan_until, then the match can occur anywhere after the scan pointer. In both cases, the scan pointer moves just beyond the last character of the match, ready to scan again from the next character onwards. This is demonstrated by the example above.

Method Categories

There are other methods besides the plain scanners. You can look ahead in the string without actually scanning. You can access the most recent match. You can modify the string being scanned, reset or terminate the scanner, find out or change the position of the scan pointer, skip ahead, and so on.

Advancing the Scan Pointer

Looking Ahead

Finding Where we Are

Setting Where we Are

Match Data

Miscellaneous

There are aliases to several of the methods.

This class implements a pretty printing algorithm. It finds line breaks and nice indentations for grouped structure.

By default, the class assumes that primitive elements are strings and each byte in the strings have single column in width. But it can be used for other situations by giving suitable arguments for some methods:

There are several candidate uses:

Bugs

Report any bugs at bugs.ruby-lang.org

References

Christian Lindig, Strictly Pretty, March 2000, www.st.cs.uni-sb.de/~lindig/papers/#pretty

Philip Wadler, A prettier printer, March 1998, homepages.inf.ed.ac.uk/wadler/topics/language-design.html#prettier

Author

Tanaka Akira <akr@fsij.org>

A module to implement the Linda distributed computing paradigm in Ruby.

Rinda is part of DRb (dRuby).

Example(s)

See the sample/drb/ directory in the Ruby distribution, from 1.8.2 onwards.

Secure random number generator interface.

This library is an interface to secure random number generators which are suitable for generating session keys in HTTP cookies, etc.

You can use this library in your application by requiring it:

require 'securerandom'

It supports the following secure random number generators:

SecureRandom is extended by the Random::Formatter module which defines the following methods:

These methods are usable as class methods of SecureRandom such as SecureRandom.hex.

If a secure random number generator is not available, NotImplementedError is raised.

No documentation available

Generates URL-encoded form data from given enum.

This generates application/x-www-form-urlencoded data defined in HTML5 from given an Enumerable object.

This internally uses URI.encode_www_form_component(str).

This method doesn’t convert the encoding of given items, so convert them before calling this method if you want to send data as other than original encoding or mixed encoding data. (Strings which are encoded in an HTML5 ASCII incompatible encoding are converted to UTF-8.)

This method doesn’t handle files. When you send a file, use multipart/form-data.

This refers url.spec.whatwg.org/#concept-urlencoded-serializer

URI.encode_www_form([["q", "ruby"], ["lang", "en"]])
#=> "q=ruby&lang=en"
URI.encode_www_form("q" => "ruby", "lang" => "en")
#=> "q=ruby&lang=en"
URI.encode_www_form("q" => ["ruby", "perl"], "lang" => "en")
#=> "q=ruby&q=perl&lang=en"
URI.encode_www_form([["q", "ruby"], ["q", "perl"], ["lang", "en"]])
#=> "q=ruby&q=perl&lang=en"

See URI.encode_www_form_component, URI.decode_www_form.

Decodes URL-encoded form data from given str.

This decodes application/x-www-form-urlencoded data and returns an array of key-value arrays.

This refers url.spec.whatwg.org/#concept-urlencoded-parser, so this supports only &-separator, and doesn’t support ;-separator.

ary = URI.decode_www_form("a=1&a=2&b=3")
ary                   #=> [['a', '1'], ['a', '2'], ['b', '3']]
ary.assoc('a').last   #=> '1'
ary.assoc('b').last   #=> '3'
ary.rassoc('a').last  #=> '2'
Hash[ary]             #=> {"a"=>"2", "b"=>"3"}

See URI.decode_www_form_component, URI.encode_www_form.

WIN32OLE_VARIABLE objects represent OLE variable information.

WIN32OLE_VARIANT objects represents OLE variant.

Win32OLE converts Ruby object into OLE variant automatically when invoking OLE methods. If OLE method requires the argument which is different from the variant by automatic conversion of Win32OLE, you can convert the specified variant type by using WIN32OLE_VARIANT class.

param = WIN32OLE_VARIANT.new(10, WIN32OLE::VARIANT::VT_R4)
oleobj.method(param)

WIN32OLE_VARIANT does not support VT_RECORD variant. Use WIN32OLE_RECORD class instead of WIN32OLE_VARIANT if the VT_RECORD variant is needed.

SecHandle struct

Creates binary representations of a SecBufferDesc structure, including the SecBuffer contained inside.

This is not an existing class, but documentation of the interface that Scheduler object should comply to in order to be used as argument to Fiber.scheduler and handle non-blocking fibers. See also the “Non-blocking fibers” section in Fiber class docs for explanations of some concepts.

Scheduler’s behavior and usage are expected to be as follows:

A typical implementation would probably rely for this closing loop on a gem like EventMachine or Async.

This way concurrent execution will be achieved transparently for every individual Fiber’s code.

Hook methods are:

When not specified otherwise, the hook implementations are mandatory: if they are not implemented, the methods trying to call hook will fail. To provide backward compatibility, in the future hooks will be optional (if they are not implemented, due to the scheduler being created for the older Ruby version, the code which needs this hook will not fail, and will just behave in a blocking fashion).

It is also strongly recommended that the scheduler implements the fiber method, which is delegated to by Fiber.schedule.

Sample toy implementation of the scheduler can be found in Ruby’s code, in test/fiber/scheduler.rb

Enumerator::ArithmeticSequence is a subclass of Enumerator, that is a representation of sequences of numbers with common difference. Instances of this class can be generated by the Range#step and Numeric#step methods.

The class can be used for slicing Array (see Array#slice) or custom collections.

Description

An FFI closure wrapper, for handling callbacks.

Example

closure = Class.new(Fiddle::Closure) {
  def call
    10
  end
}.new(Fiddle::TYPE_INT, [])
   #=> #<#<Class:0x0000000150d308>:0x0000000150d240>
func = Fiddle::Function.new(closure, [], Fiddle::TYPE_INT)
   #=> #<Fiddle::Function:0x00000001516e58>
func.call
   #=> 10
No documentation available
No documentation available

FIXME: This isn’t documented in Nutshell.

Since MonitorMixin.new_cond returns a ConditionVariable, and the example above calls while_wait and signal, this class should be documented.

UDP/IP address information used by Socket.udp_server_loop.

Zlib::GzipWriter is a class for writing gzipped files. GzipWriter should be used with an instance of IO, or IO-like, object.

Following two example generate the same result.

Zlib::GzipWriter.open('hoge.gz') do |gz|
  gz.write 'jugemu jugemu gokou no surikire...'
end

File.open('hoge.gz', 'w') do |f|
  gz = Zlib::GzipWriter.new(f)
  gz.write 'jugemu jugemu gokou no surikire...'
  gz.close
end

To make like gzip(1) does, run following:

orig = 'hoge.txt'
Zlib::GzipWriter.open('hoge.gz') do |gz|
  gz.mtime = File.mtime(orig)
  gz.orig_name = orig
  gz.write IO.binread(orig)
end

NOTE: Due to the limitation of Ruby’s finalizer, you must explicitly close GzipWriter objects by Zlib::GzipWriter#close etc. Otherwise, GzipWriter will be not able to write the gzip footer and will generate a broken gzip file.

exception to wait for writing by EAGAIN. see IO.select.

exception to wait for writing by EWOULDBLOCK. see IO.select.

exception to wait for writing by EINPROGRESS. see IO.select.

Note: Don’t use this class directly. This is an internal class.

Search took: 9ms  ·  Total Results: 857