Results for: "Array.new"

creates a socket connected to the address of self.

The optional argument opts is options represented by a hash. opts may have following options:

:timeout

specify the timeout in seconds.

If a block is given, it is called with the socket and the value of the block is returned. The socket is returned otherwise.

Addrinfo.tcp("www.ruby-lang.org", 80).connect {|s|
  s.print "GET / HTTP/1.0\r\nHost: www.ruby-lang.org\r\n\r\n"
  puts s.read
}

Connects udpsocket to host:port.

This makes possible to send without destination address.

u1 = UDPSocket.new
u1.bind("127.0.0.1", 4913)
u2 = UDPSocket.new
u2.connect("127.0.0.1", 4913)
u2.send "uuuu", 0
p u1.recvfrom(10) #=> ["uuuu", ["AF_INET", 33230, "localhost", "127.0.0.1"]]

Returns the remote address as an array which contains address_family and unix_path.

Example

serv = UNIXServer.new("/tmp/sock")
c = UNIXSocket.new("/tmp/sock")
p c.peeraddr #=> ["AF_UNIX", "/tmp/sock"]

Returns the current line number. The stream must be opened for reading. lineno counts the number of times gets is called, rather than the number of newlines encountered. The two values will differ if gets is called with a separator other than newline. See also the $. variable.

Manually sets the current line number to the given value. $. is updated only on the next read.

Positions the stream to the beginning of input, resetting lineno to zero.

See IO#readlines.

Equivalent to terminate. This method is obsolete; use terminate instead.

Returns the character position of the scan pointer. In the ‘reset’ position, this value is zero. In the ‘terminated’ position (i.e. the string is exhausted), this value is the size of the string.

In short, it’s a 0-based index into the string.

s = StringScanner.new("abcädeföghi")
s.charpos           # -> 0
s.scan_until(/ä/)   # -> "abcä"
s.pos               # -> 5
s.charpos           # -> 4

Returns running OLE Automation object or WIN32OLE object from moniker. 1st argument should be OLE program id or class id or moniker.

WIN32OLE.connect('Excel.Application') # => WIN32OLE object which represents running Excel.

Returns array of WIN32OLE_VARIABLE objects which represent variables defined in OLE class.

tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'XlSheetType')
vars = tobj.variables
vars.each do |v|
  puts "#{v.name} = #{v.value}"
end

The result of above sample script is follows:
  xlChart = -4109
  xlDialogSheet = -4116
  xlExcel4IntlMacroSheet = 4
  xlExcel4MacroSheet = 3
  xlWorksheet = -4167

Returns the number which represents variable kind.

tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'XlSheetType')
variables = tobj.variables
variables.each do |variable|
  puts "#{variable.name} #{variable.varkind}"
end

The result of above script is following:
   xlChart 2
   xlDialogSheet 2
   xlExcel4IntlMacroSheet 2
   xlExcel4MacroSheet 2
   xlWorksheet 2

Returns OLE variant type.

obj = WIN32OLE_VARIANT.new("string")
obj.vartype # => WIN32OLE::VARIANT::VT_BSTR

Removes all hash entries; returns self.

Returns a new 2-element Array consisting of the key and value of the first-found entry whose value is == to value (see Entry Order):

h = {foo: 0, bar: 1, baz: 1}
h.rassoc(1) # => [:bar, 1]

Returns nil if no such value found.

Removes every environment variable; returns ENV:

ENV.replace('foo' => '0', 'bar' => '1')
ENV.size # => 2
ENV.clear # => ENV
ENV.size # => 0

Returns a 2-element Array containing the name and value of the first found environment variable that has value value, if one exists:

ENV.replace('foo' => '0', 'bar' => '0')
ENV.rassoc('0') # => ["bar", "0"]

The order in which environment variables are examined is OS-dependent. See About Ordering.

Returns nil if there is no such environment variable.

Returns ENV itself, and warns because ENV is a wrapper for the process-wide environment variables and a clone is useless. If freeze keyword is given and not nil or false, raises ArgumentError. If freeze keyword is given and true, raises TypeError, as ENV storage cannot be frozen.

Returns the ARGV array, which contains the arguments passed to your script, one per element.

For example:

$ ruby argf.rb -v glark.txt

ARGF.argv   #=> ["-v", "glark.txt"]

Reads at most maxlen bytes from the ARGF stream.

If the optional outbuf argument is present, it must reference a String, which will receive the data. The outbuf will contain only the received data after the method call even if it is not empty at the beginning.

It raises EOFError on end of ARGF stream. Since ARGF stream is a concatenation of multiple files, internally EOF is occur for each file. ARGF.readpartial returns empty strings for EOFs except the last one and raises EOFError for the last one.

Reads each file in ARGF in its entirety, returning an Array containing lines from the files. Lines are assumed to be separated by sep.

lines = ARGF.readlines
lines[0]                #=> "This is line one\n"

Returns the next line from the current file in ARGF.

By default lines are assumed to be separated by $/; to use a different character as a separator, supply it as a String for the sep argument.

The optional limit argument specifies how many characters of each line to return. By default all characters are returned.

An EOFError is raised at the end of the file.

Reads the next character from ARGF and returns it as a String. Raises an EOFError after the last character of the last file has been read.

For example:

$ echo "foo" > file
$ ruby argf.rb file

ARGF.readchar  #=> "f"
ARGF.readchar  #=> "o"
ARGF.readchar  #=> "o"
ARGF.readchar  #=> "\n"
ARGF.readchar  #=> end of file reached (EOFError)

Positions the current file to the beginning of input, resetting ARGF.lineno to zero.

ARGF.readline   #=> "This is line one\n"
ARGF.rewind     #=> 0
ARGF.lineno     #=> 0
ARGF.readline   #=> "This is line one\n"

Returns the current line number of ARGF as a whole. This value can be set manually with ARGF.lineno=.

For example:

ARGF.lineno   #=> 0
ARGF.readline #=> "This is line 1\n"
ARGF.lineno   #=> 1
Search took: 4ms  ·  Total Results: 2195