Results for: "Dir.chdir"

Sets the Fiber scheduler for the current thread. If the scheduler is set, non-blocking fibers (created by Fiber.new with blocking: false, or by Fiber.schedule) call that scheduler’s hook methods on potentially blocking operations, and the current thread will call scheduler’s close method on finalization (allowing the scheduler to properly manage all non-finished fibers).

scheduler can be an object of any class corresponding to Fiber::SchedulerInterface. Its implementation is up to the user.

See also the “Non-blocking fibers” section in class docs.

Returns the Fiber scheduler, that was last set for the current thread with Fiber.set_scheduler if and only if the current fiber is non-blocking.

Returns the locale charmap name. It returns nil if no appropriate information.

Debian GNU/Linux
  LANG=C
    Encoding.locale_charmap  #=> "ANSI_X3.4-1968"
  LANG=ja_JP.EUC-JP
    Encoding.locale_charmap  #=> "EUC-JP"

SunOS 5
  LANG=C
    Encoding.locale_charmap  #=> "646"
  LANG=ja
    Encoding.locale_charmap  #=> "eucJP"

The result is highly platform dependent. So Encoding.find(Encoding.locale_charmap) may cause an error. If you need some encoding object even for unknown locale, Encoding.find(“locale”) can be used.

Return the accept character set for all new CGI instances.

Set the accept character set for all new CGI instances.

Executes the block for every line in ios, where lines are separated by sep. ios must be opened for reading or an IOError will be raised.

If no block is given, an enumerator is returned instead.

f = File.new("testfile")
f.each {|line| puts "#{f.lineno}: #{line}" }

produces:

1: This is line one
2: This is line two
3: This is line three
4: And so on...

See IO.readlines for details about getline_args.

Calls the given block once for each byte (0..255) in ios, passing the byte as an argument. The stream must be opened for reading or an IOError will be raised.

If no block is given, an enumerator is returned instead.

f = File.new("testfile")
checksum = 0
f.each_byte {|x| checksum ^= x }   #=> #<File:testfile>
checksum                           #=> 12

Passes the Integer ordinal of each character in ios, passing the codepoint as an argument. The stream must be opened for reading or an IOError will be raised.

If no block is given, an enumerator is returned instead.

The first form returns the MatchData object generated by the last successful pattern match. Equivalent to reading the special global variable $~ (see Special global variables in Regexp for details).

The second form returns the nth field in this MatchData object. n can be a string or symbol to reference a named capture.

Note that the last_match is local to the thread and method scope of the method that did the pattern match.

/c(.)t/ =~ 'cat'        #=> 0
Regexp.last_match       #=> #<MatchData "cat" 1:"a">
Regexp.last_match(0)    #=> "cat"
Regexp.last_match(1)    #=> "a"
Regexp.last_match(2)    #=> nil

/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/ =~ "var = val"
Regexp.last_match       #=> #<MatchData "var = val" lhs:"var" rhs:"val">
Regexp.last_match(:lhs) #=> "var"
Regexp.last_match(:rhs) #=> "val"
No documentation available

Iterates over each component of the path.

Pathname.new("/usr/bin/ruby").each_filename {|filename| ... }
  # yields "usr", "bin", and "ruby".

Returns an Enumerator if no block was given.

enum = Pathname.new("/usr/bin/ruby").each_filename
  # ... do stuff ...
enum.each { |e| ... }
  # yields "usr", "bin", and "ruby".

Iterates over each line in the file and yields a String object for each.

Iterates over the entries (files and subdirectories) in the directory, yielding a Pathname object for each entry.

See IO#each.

See IO#each_byte.

See IO#each_codepoint.

This returns the value that scan_until would return, without advancing the scan pointer. The match register is affected, though.

s = StringScanner.new("Fri Dec 12 1975 14:39")
s.check_until /12/          # -> "Fri Dec 12"
s.pos                       # -> 0
s.matched                   # -> 12

Mnemonic: it “checks” to see whether a scan_until will return a value.

Scans the string until the pattern is matched. Advances the scan pointer if advance_pointer_p, otherwise not. Returns the matched string if return_string_p is true, otherwise returns the number of bytes advanced. This method does affect the match register.

Returns the size of the most recent match in bytes, or nil if there was no recent match. This is different than matched.size, which will return the size in characters.

s = StringScanner.new('test string')
s.check /\w+/           # -> "test"
s.matched_size          # -> 4
s.check /\d+/           # -> nil
s.matched_size          # -> nil

Returns the pre-match

(in the regular expression sense) of the last scan.
s = StringScanner.new('test string')
s.scan(/\w+/)           # -> "test"
s.scan(/\s+/)           # -> " "
s.pre_match             # -> "test"
s.post_match            # -> "string"

Returns the post-match

(in the regular expression sense) of the last scan.
s = StringScanner.new('test string')
s.scan(/\w+/)           # -> "test"
s.scan(/\s+/)           # -> " "
s.pre_match             # -> "test"
s.post_match            # -> "string"

Whether scanner uses fixed anchor mode or not.

If fixed anchor mode is used, \A always matches the beginning of the string. Otherwise, \A always matches the current position.

Calls the given block with each value; returns self:

h = {foo: 0, bar: 1, baz: 2}
h.each_value {|value| puts value } # => {:foo=>0, :bar=>1, :baz=>2}

Output:

0
1
2

Returns a new Enumerator if no block given:

h = {foo: 0, bar: 1, baz: 2}
e = h.each_value # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:each_value>
h1 = e.each {|value| puts value }
h1 # => {:foo=>0, :bar=>1, :baz=>2}

Output:

0
1
2

Calls the given block with each key; returns self:

h = {foo: 0, bar: 1, baz: 2}
h.each_key {|key| puts key }  # => {:foo=>0, :bar=>1, :baz=>2}

Output:

foo
bar
baz

Returns a new Enumerator if no block given:

h = {foo: 0, bar: 1, baz: 2}
e = h.each_key # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:each_key>
h1 = e.each {|key| puts key }
h1 # => {:foo=>0, :bar=>1, :baz=>2}

Output:

foo
bar
baz

Returns a new Array containing the values associated with the given keys *keys:

h = {foo: 0, bar: 1, baz: 2}
h.fetch_values(:baz, :foo) # => [2, 0]

Returns a new empty Array if no arguments given.

When a block is given, calls the block with each missing key, treating the block’s return value as the value for that key:

h = {foo: 0, bar: 1, baz: 2}
values = h.fetch_values(:bar, :foo, :bad, :bam) {|key| key.to_s}
values # => [1, 0, "bad", "bam"]

When no block is given, raises an exception if any given key is not found.

Search took: 4ms  ·  Total Results: 1057