Results for: "Array"

Returns the currently executing Ractor.

Ractor.current #=> #<Ractor:#1 running>

Checks if the object is shareable by ractors.

Ractor.shareable?(1)            #=> true -- numbers and other immutable basic values are frozen
Ractor.shareable?('foo')        #=> false, unless the string is frozen due to # freeze_string_literals: true
Ractor.shareable?('foo'.freeze) #=> true

See also the “Shareable and unshareable objects” section in the Ractor class docs.

When max is an Integer, rand returns a random integer greater than or equal to zero and less than max. Unlike Kernel.rand, when max is a negative integer or zero, rand raises an ArgumentError.

prng = Random.new
prng.rand(100)       # => 42

When max is a Float, rand returns a random floating point number between 0.0 and max, including 0.0 and excluding max.

prng.rand(1.5)       # => 1.4600282860034115

When range is a Range, rand returns a random number where range.member?(number) == true.

prng.rand(5..9)      # => one of [5, 6, 7, 8, 9]
prng.rand(5...9)     # => one of [5, 6, 7, 8]
prng.rand(5.0..9.0)  # => between 5.0 and 9.0, including 9.0
prng.rand(5.0...9.0) # => between 5.0 and 9.0, excluding 9.0

Both the beginning and ending values of the range must respond to subtract (-) and add (+)methods, or rand will raise an ArgumentError.

Seeds the system pseudo-random number generator, with number. The previous seed value is returned.

If number is omitted, seeds the generator using a source of entropy provided by the operating system, if available (/dev/urandom on Unix systems or the RSA cryptographic provider on Windows), which is then combined with the time, the process id, and a sequence number.

srand may be used to ensure repeatable sequences of pseudo-random numbers between different runs of the program. By setting the seed to a known value, programs can be made deterministic during testing.

srand 1234               # => 268519324636777531569100071560086917274
[ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]
[ rand(10), rand(1000) ] # => [4, 664]
srand 1234               # => 1234
[ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]

Returns a random number using the Ruby system PRNG.

See also Random#rand.

Returns a string, using platform providing features. Returned value is expected to be a cryptographically secure pseudo-random number in binary form. This method raises a RuntimeError if the feature provided by platform failed to prepare the result.

In 2017, Linux manpage random(7) writes that “no cryptographic primitive available today can hope to promise more than 256 bits of security”. So it might be questionable to pass size > 32 to this method.

Random.urandom(8)  #=> "\x78\x41\xBA\xAF\x7D\xEA\xD8\xEA"

Basically the same as ::new. However, if class Thread is subclassed, then calling start in that subclass will not invoke the subclass’s initialize method.

Returns the currently executing thread.

Thread.current   #=> #<Thread:0x401bdf4c run>

Raises an exception from the given thread. The caller does not have to be thr. See Kernel#raise for more information.

Thread.abort_on_exception = true
a = Thread.new { sleep(200) }
a.raise("Gotcha")

This will produce:

prog.rb:3: Gotcha (RuntimeError)
 from prog.rb:2:in `initialize'
 from prog.rb:2:in `new'
 from prog.rb:2

Returns the current backtrace of the target thread.

A convenience method for TracePoint.new, that activates the trace automatically.

trace = TracePoint.trace(:call) { |tp| [tp.lineno, tp.event] }
#=> #<TracePoint:enabled>

trace.enabled? #=> true

With no arguments, raises the exception in $! or raises a RuntimeError if $! is nil. With a single String argument, raises a RuntimeError with the string as a message. Otherwise, the first parameter should be an Exception class (or another object that returns an Exception object when sent an exception message). The optional second parameter sets the message associated with the exception (accessible via Exception#message), and the third parameter is an array of callback information (accessible via Exception#backtrace). The cause of the generated exception (accessible via Exception#cause) is automatically set to the “current” exception ($!), if any. An alternative value, either an Exception object or nil, can be specified via the :cause argument.

Exceptions are caught by the rescue clause of begin...end blocks.

raise "Failed to create socket"
raise ArgumentError, "No parameters", caller

Seeds the system pseudo-random number generator, with number. The previous seed value is returned.

If number is omitted, seeds the generator using a source of entropy provided by the operating system, if available (/dev/urandom on Unix systems or the RSA cryptographic provider on Windows), which is then combined with the time, the process id, and a sequence number.

srand may be used to ensure repeatable sequences of pseudo-random numbers between different runs of the program. By setting the seed to a known value, programs can be made deterministic during testing.

srand 1234               # => 268519324636777531569100071560086917274
[ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]
[ rand(10), rand(1000) ] # => [4, 664]
srand 1234               # => 1234
[ rand, rand ]           # => [0.1915194503788923, 0.6221087710398319]

If called without an argument, or if max.to_i.abs == 0, rand returns a pseudo-random floating point number between 0.0 and 1.0, including 0.0 and excluding 1.0.

rand        #=> 0.2725926052826416

When max.abs is greater than or equal to 1, rand returns a pseudo-random integer greater than or equal to 0 and less than max.to_i.abs.

rand(100)   #=> 12

When max is a Range, rand returns a random number where range.member?(number) == true.

Negative or floating point values for max are allowed, but may give surprising results.

rand(-100) # => 87
rand(-0.5) # => 0.8130921818028143
rand(1.9)  # equivalent to rand(1), which is always 0

Kernel.srand may be used to ensure that sequences of random numbers are reproducible between different runs of a program.

See also Random.rand.

Returns x/y or arg as a Rational.

Rational(2, 3)   #=> (2/3)
Rational(5)      #=> (5/1)
Rational(0.5)    #=> (1/2)
Rational(0.3)    #=> (5404319552844595/18014398509481984)

Rational("2/3")  #=> (2/3)
Rational("0.3")  #=> (3/10)

Rational("10 cents")  #=> ArgumentError
Rational(nil)         #=> TypeError
Rational(1, nil)      #=> TypeError

Rational("10 cents", exception: false)  #=> nil

Syntax of the string form:

string form = extra spaces , rational , extra spaces ;
rational = [ sign ] , unsigned rational ;
unsigned rational = numerator | numerator , "/" , denominator ;
numerator = integer part | fractional part | integer part , fractional part ;
denominator = digits ;
integer part = digits ;
fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
sign = "-" | "+" ;
digits = digit , { digit | "_" , digit } ;
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
extra spaces = ? \s* ? ;

See also String#to_r.

Specifies the handling of signals. The first parameter is a signal name (a string such as “SIGALRM”, “SIGUSR1”, and so on) or a signal number. The characters “SIG” may be omitted from the signal name. The command or block specifies code to be run when the signal is raised. If the command is the string “IGNORE” or “SIG_IGN”, the signal will be ignored. If the command is “DEFAULT” or “SIG_DFL”, the Ruby’s default handler will be invoked. If the command is “EXIT”, the script will be terminated by the signal. If the command is “SYSTEM_DEFAULT”, the operating system’s default handler will be invoked. Otherwise, the given command or block will be run. The special signal name “EXIT” or signal number zero will be invoked just prior to program termination. trap returns the previous handler for the given signal.

Signal.trap(0, proc { puts "Terminating: #{$$}" })
Signal.trap("CLD")  { puts "Child died" }
fork && Process.wait

produces:

Terminating: 27461
Child died
Terminating: 27460

Deprecated. Use block_given? instead.

If warnings have been disabled (for example with the -W0 flag), does nothing. Otherwise, converts each of the messages to strings, appends a newline character to the string if the string does not end in a newline, and calls Warning.warn with the string.

  warn("warning 1", "warning 2")

<em>produces:</em>

  warning 1
  warning 2

If the uplevel keyword argument is given, the string will be prepended with information for the given caller frame in the same format used by the rb_warn C function.

  # In baz.rb
  def foo
    warn("invalid call to foo", uplevel: 1)
  end

  def bar
    foo
  end

  bar

<em>produces:</em>

  baz.rb:6: warning: invalid call to foo

If category keyword argument is given, passes the category to Warning.warn. The category given must be be one of the following categories:

:deprecated

Used for warning for deprecated functionality that may be removed in the future.

:experimental

Used for experimental features that may change in future releases.

With a block given, returns an array of two arrays:

Examples:

p = (1..4).partition {|i| i.even? }
p # => [[2, 4], [1, 3]]
p = ('a'..'d').partition {|c| c < 'c' }
p # => [["a", "b"], ["c", "d"]]
h = {foo: 0, bar: 1, baz: 2, bat: 3}
p = h.partition {|key, value| key.start_with?('b') }
p # => [[[:bar, 1], [:baz, 2], [:bat, 3]], [[:foo, 0]]]
p = h.partition {|key, value| value < 2 }
p # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]]]

With no block given, returns an Enumerator.

Related: Enumerable#group_by.

Writes warning message msg to $stderr. This method is called by Ruby for all emitted warnings. A category may be included with the warning.

See the documentation of the Warning module for how to customize this.

Enables the coverage measurement. See the documentation of Coverage class in detail. This is equivalent to Coverage.setup and Coverage.resume.

Returns a memory pointer of a function’s hexadecimal address location val

Example:

lib = Fiddle.dlopen('/lib64/libc-2.15.so')
=> #<Fiddle::Handle:0x00000001342460>

Fiddle.dlwrap(lib['strcpy'].to_s(16))
=> 25522520

Returns the hexadecimal representation of a memory pointer address addr

Example:

lib = Fiddle.dlopen('/lib64/libc-2.15.so')
=> #<Fiddle::Handle:0x00000001342460>

lib['strcpy'].to_s(16)
=> "7f59de6dd240"

Fiddle.dlunwrap(Fiddle.dlwrap(lib['strcpy'].to_s(16)))
=> "7f59de6dd240"

Returns the Ruby objects created by parsing the given source.

Argument source contains the String to be parsed.

Argument opts, if given, contains a Hash of options for the parsing. See Parsing Options.


When source is a JSON array, returns a Ruby Array:

source = '["foo", 1.0, true, false, null]'
ruby = JSON.parse(source)
ruby # => ["foo", 1.0, true, false, nil]
ruby.class # => Array

When source is a JSON object, returns a Ruby Hash:

source = '{"a": "foo", "b": 1.0, "c": true, "d": false, "e": null}'
ruby = JSON.parse(source)
ruby # => {"a"=>"foo", "b"=>1.0, "c"=>true, "d"=>false, "e"=>nil}
ruby.class # => Hash

For examples of parsing for all JSON data types, see Parsing JSON.

Parses nested JSON objects:

source = <<-EOT
{
"name": "Dave",
  "age" :40,
  "hats": [
    "Cattleman's",
    "Panama",
    "Tophat"
  ]
}
EOT
ruby = JSON.parse(source)
ruby # => {"name"=>"Dave", "age"=>40, "hats"=>["Cattleman's", "Panama", "Tophat"]}

Raises an exception if source is not valid JSON:

# Raises JSON::ParserError (783: unexpected token at ''):
JSON.parse('')

Calls

parse(source, opts)

with source and possibly modified opts.

Differences from JSON.parse:

Search took: 2ms  ·  Total Results: 1348