Generates the Makefile for your extension, passing along any options and preprocessor constants that you may have generated through other methods.
The target
name should correspond the name of the global function name defined within your C extension, minus the Init_
. For example, if your C extension is defined as Init_foo
, then your target would simply be “foo”.
If any “/” characters are present in the target name, only the last name is interpreted as the target name, and the rest are considered toplevel directory names, and the generated Makefile will be altered accordingly to follow that directory structure.
For example, if you pass “test/foo” as a target name, your extension will be installed under the “test” directory. This means that in order to load the file within a Ruby program later, that directory structure will have to be followed, e.g. require 'test/foo'
.
The srcprefix
should be used when your source files are not in the same directory as your build script. This will not only eliminate the need for you to manually copy the source files into the same directory as your build script, but it also sets the proper target_prefix
in the generated Makefile.
Setting the target_prefix
will, in turn, install the generated binary in a directory under your RbConfig::CONFIG['sitearchdir']
that mimics your local filesystem when you run make install
.
For example, given the following file tree:
ext/ extconf.rb test/ foo.c
And given the following code:
create_makefile('test/foo', 'test')
That will set the target_prefix
in the generated Makefile to “test”. That, in turn, will create the following file tree when installed via the make install
command:
/path/to/ruby/sitearchdir/test/foo.so
It is recommended that you use this approach to generate your makefiles, instead of copying files around manually, because some third party libraries may depend on the target_prefix
being set properly.
The srcprefix
argument can be used to override the default source directory, i.e. the current directory. It is included as part of the VPATH
and added to the list of INCFLAGS
.
Returns a Hash
of the defined schemes.
Open3.pipeline_start
starts a list of commands as a pipeline. No pipes are created for stdin of the first command and stdout of the last command.
Open3.pipeline_start(cmd1, cmd2, ... [, opts]) {|wait_threads| ... } wait_threads = Open3.pipeline_start(cmd1, cmd2, ... [, opts]) ...
Each cmd is a string or an array. If it is an array, the elements are passed to Process.spawn
.
cmd: commandline command line string which is passed to a shell [env, commandline, opts] command line string which is passed to a shell [env, cmdname, arg1, ..., opts] command name and one or more arguments (no shell) [env, [cmdname, argv0], arg1, ..., opts] command name and arguments including argv[0] (no shell) Note that env and opts are optional, as for Process.spawn.
Example:
# Run xeyes in 10 seconds. Open3.pipeline_start("xeyes") {|ts| sleep 10 t = ts[0] Process.kill("TERM", t.pid) p t.value #=> #<Process::Status: pid 911 SIGTERM (signal 15)> } # Convert pdf to ps and send it to a printer. # Collect error message of pdftops and lpr. pdf_file = "paper.pdf" printer = "printer-name" err_r, err_w = IO.pipe Open3.pipeline_start(["pdftops", pdf_file, "-"], ["lpr", "-P#{printer}"], :err=>err_w) {|ts| err_w.close p err_r.read # error messages of pdftops and lpr. }
Open3.pipeline_start
starts a list of commands as a pipeline. No pipes are created for stdin of the first command and stdout of the last command.
Open3.pipeline_start(cmd1, cmd2, ... [, opts]) {|wait_threads| ... } wait_threads = Open3.pipeline_start(cmd1, cmd2, ... [, opts]) ...
Each cmd is a string or an array. If it is an array, the elements are passed to Process.spawn
.
cmd: commandline command line string which is passed to a shell [env, commandline, opts] command line string which is passed to a shell [env, cmdname, arg1, ..., opts] command name and one or more arguments (no shell) [env, [cmdname, argv0], arg1, ..., opts] command name and arguments including argv[0] (no shell) Note that env and opts are optional, as for Process.spawn.
Example:
# Run xeyes in 10 seconds. Open3.pipeline_start("xeyes") {|ts| sleep 10 t = ts[0] Process.kill("TERM", t.pid) p t.value #=> #<Process::Status: pid 911 SIGTERM (signal 15)> } # Convert pdf to ps and send it to a printer. # Collect error message of pdftops and lpr. pdf_file = "paper.pdf" printer = "printer-name" err_r, err_w = IO.pipe Open3.pipeline_start(["pdftops", pdf_file, "-"], ["lpr", "-P#{printer}"], :err=>err_w) {|ts| err_w.close p err_r.read # error messages of pdftops and lpr. }
Adds a post-build hook that will be passed an Gem::Installer
instance when Gem::Installer#install
is called. The hook is called after the gem has been extracted and extensions have been built but before the executables or gemspec has been written. If the hook returns false
then the gem’s files will be removed and the install will be aborted.
Adds a post-installs hook that will be passed a Gem::DependencyInstaller
and a list of installed specifications when Gem::DependencyInstaller#install
is complete
Safely read a file in binary mode on all platforms.
Regexp
for require-able path suffixes.
Is this a windows platform?
Is this a java platform?
Looks for a gem dependency file at path
and activates the gems in the file if found. If the file is not found an ArgumentError
is raised.
If path
is not given the RUBYGEMS_GEMDEPS environment variable is used, but if no file is found no exception is raised.
If ‘-’ is given for path
RubyGems searches up from the current working directory for gem dependency files (gem.deps.rb, Gemfile, Isolate) and activates the gems in the first one found.
You can run this automatically when rubygems starts. To enable, set the RUBYGEMS_GEMDEPS
environment variable to either the path of your gem dependencies file or “-” to auto-discover in parent directories.
NOTE: Enabling automatic discovery on multiuser systems can lead to execution of arbitrary code when used from directories outside your control.
Default options for gem commands for Ruby implementers.
The options here should be structured as an array of string “gem” command names as keys and a string of the default options as values.
Example:
def self.platform_defaults
{ 'install' => '--no-rdoc --no-ri --env-shebang', 'update' => '--no-rdoc --no-ri --env-shebang' }
end
The iterator version of the tsort
method. obj.tsort_each
is similar to obj.tsort.each
, but modification of obj during the iteration may lead to unexpected results.
tsort_each
returns nil
. If there is a cycle, TSort::Cyclic
is raised.
class G include TSort def initialize(g) @g = g end def tsort_each_child(n, &b) @g[n].each(&b) end def tsort_each_node(&b) @g.each_key(&b) end end graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) graph.tsort_each {|n| p n } #=> 4 # 2 # 3 # 1
The iterator version of the TSort.tsort
method.
The graph is represented by each_node and each_child. each_node should have call
method which yields for each node in the graph. each_child should have call
method which takes a node argument and yields for each child node.
g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} each_node = lambda {|&b| g.each_key(&b) } each_child = lambda {|n, &b| g[n].each(&b) } TSort.tsort_each(each_node, each_child) {|n| p n } #=> 4 # 2 # 3 # 1
Returns an estimate of the resolution of a clock_id
using the POSIX clock_getres()
function.
Note the reported resolution is often inaccurate on most platforms due to underlying bugs for this function and therefore the reported resolution often differs from the actual resolution of the clock in practice. Inaccurate reported resolutions have been observed for various clocks including CLOCK_MONOTONIC
and CLOCK_MONOTONIC_RAW
when using Linux, macOS, BSD or AIX platforms, when using ARM processors, or when using virtualization.
clock_id
specifies a kind of clock. See the document of Process.clock_gettime
for details. clock_id
can be a symbol as for Process.clock_gettime
.
If the given clock_id
is not supported, Errno::EINVAL is raised.
unit
specifies the type of the return value. Process.clock_getres
accepts unit
as Process.clock_gettime
. The default value, :float_second
, is also the same as Process.clock_gettime
.
Process.clock_getres
also accepts :hertz
as unit
. :hertz
means the reciprocal of :float_second
.
:hertz
can be used to obtain the exact value of the clock ticks per second for the times() function and CLOCKS_PER_SEC for the clock() function.
Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz)
returns the clock ticks per second.
Process.clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz)
returns CLOCKS_PER_SEC.
p Process.clock_getres(Process::CLOCK_MONOTONIC) #=> 1.0e-09
Returns the octet string representation of the elliptic curve point.
conversion_form specifies how the point is converted. Possible values are:
:compressed
:uncompressed
:hybrid
Determines whether the given ‘requirement` is satisfied by the given `spec`, in the context of the current `activated` dependency graph.
@param [Object] requirement @param [DependencyGraph] activated the current dependency graph in the
resolution process.
@param [Object] spec @return [Boolean] whether ‘requirement` is satisfied by `spec` in the
context of the current `activated` dependency graph.
Returns AST nodes under this one. Each kind of node has different children, depending on what kind of node it is.
The returned array may contain other nodes or nil
.