Results for: "partition"

No documentation available

Raised when a gem dependencies file specifies a ruby version that does not match the current version.

Raised by Resolver when a dependency requests a gem for which there is no spec.

Gem::PathSupport facilitates the GEM_HOME and GEM_PATH environment settings to the rest of RubyGems.

The Version class processes string versions into comparable values. A version string should normally be a series of numbers separated by periods. Each part (digits separated by periods) is considered its own number, and these are used for sorting. So for instance, 3.10 sorts higher than 3.2 because ten is greater than two.

If any part contains letters (currently only a-z are supported) then that version is considered prerelease. Versions with a prerelease part in the Nth part sort less than versions with N-1 parts. Prerelease parts are sorted alphabetically using the normal Ruby string sorting rules. If a prerelease part contains both letters and numbers, it will be broken into multiple parts to provide expected sort behavior (1.0.a10 becomes 1.0.a.10, and is greater than 1.0.a9).

Prereleases sort between real releases (newest to oldest):

  1. 1.0

  2. 1.0.b1

  3. 1.0.a.2

  4. 0.9

If you want to specify a version restriction that includes both prereleases and regular releases of the 1.x series this is the best way:

s.add_dependency 'example', '>= 1.0.0.a', '< 2.0.0'

How Software Changes

Users expect to be able to specify a version constraint that gives them some reasonable expectation that new versions of a library will work with their software if the version constraint is true, and not work with their software if the version constraint is false. In other words, the perfect system will accept all compatible versions of the library and reject all incompatible versions.

Libraries change in 3 ways (well, more than 3, but stay focused here!).

  1. The change may be an implementation detail only and have no effect on the client software.

  2. The change may add new features, but do so in a way that client software written to an earlier version is still compatible.

  3. The change may change the public interface of the library in such a way that old software is no longer compatible.

Some examples are appropriate at this point. Suppose I have a Stack class that supports a push and a pop method.

Examples of Category 1 changes:

Examples of Category 2 changes might be:

Examples of Category 3 changes might be:

RubyGems Rational Versioning

Examples

Let’s work through a project lifecycle using our Stack example from above.

Version 0.0.1

The initial Stack class is release.

Version 0.0.2

Switched to a linked=list implementation because it is cooler.

Version 0.1.0

Added a depth method.

Version 1.0.0

Added top and made pop return nil (pop used to return the old top item).

Version 1.1.0

push now returns the value pushed (it used it return nil).

Version 1.1.1

Fixed a bug in the linked list implementation.

Version 1.1.2

Fixed a bug introduced in the last fix.

Client A needs a stack with basic push/pop capability. They write to the original interface (no top), so their version constraint looks like:

gem 'stack', '>= 0.0'

Essentially, any version is OK with Client A. An incompatible change to the library will cause them grief, but they are willing to take the chance (we call Client A optimistic).

Client B is just like Client A except for two things: (1) They use the depth method and (2) they are worried about future incompatibilities, so they write their version constraint like this:

gem 'stack', '~> 0.1'

The depth method was introduced in version 0.1.0, so that version or anything later is fine, as long as the version stays below version 1.0 where incompatibilities are introduced. We call Client B pessimistic because they are worried about incompatible future changes (it is OK to be pessimistic!).

Preventing Version Catastrophe:

From: blog.zenspider.com/2008/10/rubygems-howto-preventing-cata.html

Let’s say you’re depending on the fnord gem version 2.y.z. If you specify your dependency as “>= 2.0.0” then, you’re good, right? What happens if fnord 3.0 comes out and it isn’t backwards compatible with 2.y.z? Your stuff will break as a result of using “>=”. The better route is to specify your dependency with an “approximate” version specifier (“~>”). They’re a tad confusing, so here is how the dependency specifiers work:

Specification From  ... To (exclusive)
">= 3.0"      3.0   ... &infin;
"~> 3.0"      3.0   ... 4.0
"~> 3.0.0"    3.0.0 ... 3.1
"~> 3.5"      3.5   ... 4.0
"~> 3.5.0"    3.5.0 ... 3.6
"~> 3"        3.0   ... 4.0

For the last example, single-digit versions are automatically extended with a zero to give a sensible result.

Raised by Timeout.timeout when the block times out.

Class that parses String’s into URI’s.

It contains a Hash set of patterns and Regexp’s that match and validate.

Raised by transcoding methods when a named encoding does not correspond with a known converter.

Encoding conversion class.

No documentation available

Raised by Timeout.timeout when the block times out.

No documentation available

A mixin that provides methods for parsing C struct and prototype signatures.

Example

require 'fiddle/import'

include Fiddle::CParser
  #=> Object

parse_ctype('int')
  #=> Fiddle::TYPE_INT

parse_struct_signature(['int i', 'char c'])
  #=> [[Fiddle::TYPE_INT, Fiddle::TYPE_CHAR], ["i", "c"]]

parse_signature('double sum(double, double)')
  #=> ["sum", Fiddle::TYPE_DOUBLE, [Fiddle::TYPE_DOUBLE, Fiddle::TYPE_DOUBLE]]

exception to wait for writing. see IO.select.

Provides classes and methods to request, create and validate RFC3161-compliant timestamps. Request may be used to either create requests from scratch or to parse existing requests that again can be used to request timestamps from a timestamp server, e.g. via the net/http. The resulting timestamp response may be parsed using Response.

Please note that Response is read-only and immutable. To create a Response, an instance of Factory as well as a valid Request are needed.

Create a Response:

#Assumes ts.p12 is a PKCS#12-compatible file with a private key
#and a certificate that has an extended key usage of 'timeStamping'
p12 = OpenSSL::PKCS12.new(File.open('ts.p12', 'rb'), 'pwd')
md = OpenSSL::Digest.new('SHA1')
hash = md.digest(data) #some binary data to be timestamped
req = OpenSSL::Timestamp::Request.new
req.algorithm = 'SHA1'
req.message_imprint = hash
req.policy_id = "1.2.3.4.5"
req.nonce = 42
fac = OpenSSL::Timestamp::Factory.new
fac.gen_time = Time.now
fac.serial_number = 1
timestamp = fac.create_timestamp(p12.key, p12.certificate, req)

Verify a timestamp response:

#Assume we have a timestamp token in a file called ts.der
ts = OpenSSL::Timestamp::Response.new(File.open('ts.der', 'rb')
#Assume we have the Request for this token in a file called req.der
req = OpenSSL::Timestamp::Request.new(File.open('req.der', 'rb')
# Assume the associated root CA certificate is contained in a
# DER-encoded file named root.cer
root = OpenSSL::X509::Certificate.new(File.open('root.cer', 'rb')
# get the necessary intermediate certificates, available in
# DER-encoded form in inter1.cer and inter2.cer
inter1 = OpenSSL::X509::Certificate.new(File.open('inter1.cer', 'rb')
inter2 = OpenSSL::X509::Certificate.new(File.open('inter2.cer', 'rb')
ts.verify(req, root, inter1, inter2) -> ts or raises an exception if validation fails

Mixin module that provides the following:

  1. Access to the CGI environment variables as methods. See documentation to the CGI class for a list of these variables. The methods are exposed by removing the leading HTTP_ (if it exists) and downcasing the name. For example, auth_type will return the environment variable AUTH_TYPE, and accept will return the value for HTTP_ACCEPT.

  2. Access to cookies, including the cookies attribute.

  3. Access to parameters, including the params attribute, and overloading [] to perform parameter value lookup by key.

  4. The initialize_query method, for initializing the above mechanisms, handling multipart forms, and allowing the class to be used in “offline” mode.

Mixin module providing HTML generation methods.

For example,

cgi.a("http://www.example.com") { "Example" }
  # => "<A HREF=\"http://www.example.com\">Example</A>"

Modules Html3, Html4, etc., contain more basic HTML-generation methods (#title, #h1, etc.).

See class CGI for a detailed example.

A utility module for conversion routines, often handy in HTML generation.

No documentation available
No documentation available

Helper methods for both Gem::Installer and Gem::Uninstaller

No documentation available

This module contains various utility methods as module methods.

An Array is an ordered, integer-indexed collection of objects, called elements. Any object may be an Array element.

Array Indexes

Array indexing starts at 0, as in C or Java.

A positive index is an offset from the first element:

A negative index is an offset, backwards, from the end of the array:

A non-negative index is in range if it is smaller than the size of the array. For a 3-element array:

A negative index is in range if its absolute value is not larger than the size of the array. For a 3-element array:

Creating Arrays

A new array can be created by using the literal constructor []. Arrays can contain different types of objects. For example, the array below contains an Integer, a String and a Float:

ary = [1, "two", 3.0] #=> [1, "two", 3.0]

An array can also be created by explicitly calling Array.new with zero, one (the initial size of the Array) or two arguments (the initial size and a default object).

ary = Array.new    #=> []
Array.new(3)       #=> [nil, nil, nil]
Array.new(3, true) #=> [true, true, true]

Note that the second argument populates the array with references to the same object. Therefore, it is only recommended in cases when you need to instantiate arrays with natively immutable objects such as Symbols, numbers, true or false.

To create an array with separate objects a block can be passed instead. This method is safe to use with mutable objects such as hashes, strings or other arrays:

Array.new(4) {Hash.new}    #=> [{}, {}, {}, {}]
Array.new(4) {|i| i.to_s } #=> ["0", "1", "2", "3"]

This is also a quick way to build up multi-dimensional arrays:

empty_table = Array.new(3) {Array.new(3)}
#=> [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]]

An array can also be created by using the Array() method, provided by Kernel, which tries to call to_ary, then to_a on its argument.

Array({:a => "a", :b => "b"}) #=> [[:a, "a"], [:b, "b"]]

Example Usage

In addition to the methods it mixes in through the Enumerable module, the Array class has proprietary methods for accessing, searching and otherwise manipulating arrays.

Some of the more common ones are illustrated below.

Accessing Elements

Elements in an array can be retrieved using the Array#[] method. It can take a single integer argument (a numeric index), a pair of arguments (start and length) or a range. Negative indices start counting from the end, with -1 being the last element.

arr = [1, 2, 3, 4, 5, 6]
arr[2]    #=> 3
arr[100]  #=> nil
arr[-3]   #=> 4
arr[2, 3] #=> [3, 4, 5]
arr[1..4] #=> [2, 3, 4, 5]
arr[1..-3] #=> [2, 3, 4]

Another way to access a particular array element is by using the at method

arr.at(0) #=> 1

The slice method works in an identical manner to Array#[].

To raise an error for indices outside of the array bounds or else to provide a default value when that happens, you can use fetch.

arr = ['a', 'b', 'c', 'd', 'e', 'f']
arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6
arr.fetch(100, "oops") #=> "oops"

The special methods first and last will return the first and last elements of an array, respectively.

arr.first #=> 1
arr.last  #=> 6

To return the first n elements of an array, use take

arr.take(3) #=> [1, 2, 3]

drop does the opposite of take, by returning the elements after n elements have been dropped:

arr.drop(3) #=> [4, 5, 6]

Obtaining Information about an Array

Arrays keep track of their own length at all times. To query an array about the number of elements it contains, use length, count or size.

browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE']
browsers.length #=> 5
browsers.count #=> 5

To check whether an array contains any elements at all

browsers.empty? #=> false

To check whether a particular item is included in the array

browsers.include?('Konqueror') #=> false

Adding Items to Arrays

Items can be added to the end of an array by using either push or <<

arr = [1, 2, 3, 4]
arr.push(5) #=> [1, 2, 3, 4, 5]
arr << 6    #=> [1, 2, 3, 4, 5, 6]

unshift will add a new item to the beginning of an array.

arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6]

With insert you can add a new element to an array at any position.

arr.insert(3, 'apple')  #=> [0, 1, 2, 'apple', 3, 4, 5, 6]

Using the insert method, you can also insert multiple values at once:

arr.insert(3, 'orange', 'pear', 'grapefruit')
#=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6]

Removing Items from an Array

The method pop removes the last element in an array and returns it:

arr =  [1, 2, 3, 4, 5, 6]
arr.pop #=> 6
arr #=> [1, 2, 3, 4, 5]

To retrieve and at the same time remove the first item, use shift:

arr.shift #=> 1
arr #=> [2, 3, 4, 5]

To delete an element at a particular index:

arr.delete_at(2) #=> 4
arr #=> [2, 3, 5]

To delete a particular element anywhere in an array, use delete:

arr = [1, 2, 2, 3]
arr.delete(2) #=> 2
arr #=> [1,3]

A useful method if you need to remove nil values from an array is compact:

arr = ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact  #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact! #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, 'bar', 7, 'baz']

Another common need is to remove duplicate elements from an array.

It has the non-destructive uniq, and destructive method uniq!

arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556]
arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123]

Iterating over Arrays

Like all classes that include the Enumerable module, Array has an each method, which defines what elements should be iterated over and how. In case of Array’s each, all elements in the Array instance are yielded to the supplied block in sequence.

Note that this operation leaves the array unchanged.

arr = [1, 2, 3, 4, 5]
arr.each {|a| print a -= 10, " "}
# prints: -9 -8 -7 -6 -5
#=> [1, 2, 3, 4, 5]

Another sometimes useful iterator is reverse_each which will iterate over the elements in the array in reverse order.

words = %w[first second third fourth fifth sixth]
str = ""
words.reverse_each {|word| str += "#{word} "}
p str #=> "sixth fifth fourth third second first "

The map method can be used to create a new array based on the original array, but with the values modified by the supplied block:

arr.map {|a| 2*a}     #=> [2, 4, 6, 8, 10]
arr                   #=> [1, 2, 3, 4, 5]
arr.map! {|a| a**2}   #=> [1, 4, 9, 16, 25]
arr                   #=> [1, 4, 9, 16, 25]

Selecting Items from an Array

Elements can be selected from an array according to criteria defined in a block. The selection can happen in a destructive or a non-destructive manner. While the destructive operations will modify the array they were called on, the non-destructive methods usually return a new array with the selected elements, but leave the original array unchanged.

Non-destructive Selection

arr = [1, 2, 3, 4, 5, 6]
arr.select {|a| a > 3}       #=> [4, 5, 6]
arr.reject {|a| a < 3}       #=> [3, 4, 5, 6]
arr.drop_while {|a| a < 4}   #=> [4, 5, 6]
arr                          #=> [1, 2, 3, 4, 5, 6]

Destructive Selection

select! and reject! are the corresponding destructive methods to select and reject

Similar to select vs. reject, delete_if and keep_if have the exact opposite result when supplied with the same block:

arr.delete_if {|a| a < 4}   #=> [4, 5, 6]
arr                         #=> [4, 5, 6]

arr = [1, 2, 3, 4, 5, 6]
arr.keep_if {|a| a < 4}   #=> [1, 2, 3]
arr                       #=> [1, 2, 3]

for pack.c

Raised by exit to initiate the termination of the script.

Search took: 14ms  ·  Total Results: 2543