Results for: "OptionParser"

Raised when the interrupt signal is received, typically because the user has pressed Control-C (on most posix platforms). As such, it is a subclass of SignalException.

begin
  puts "Press ctrl-C when you get bored"
  loop {}
rescue Interrupt => e
  puts "Note: You will typically use Signal.trap instead."
end

produces:

Press ctrl-C when you get bored

then waits until it is interrupted with Control-C and then prints:

Note: You will typically use Signal.trap instead.

The most standard error types are subclasses of StandardError. A rescue clause without an explicit Exception class will rescue all StandardErrors (and only those).

def foo
  raise "Oups"
end
foo rescue "Hello"   #=> "Hello"

On the other hand:

require 'does/not/exist' rescue "Hi"

raises the exception:

LoadError: no such file to load -- does/not/exist

Raised when the arguments are wrong and there isn’t a more specific Exception class.

Ex: passing the wrong number of arguments

[1, 2, 3].first(4, 5)

raises the exception:

ArgumentError: wrong number of arguments (given 2, expected 1)

Ex: passing an argument that is not acceptable:

[1, 2, 3].first(-4)

raises the exception:

ArgumentError: negative array size

ScriptError is the superclass for errors raised when a script can not be executed because of a LoadError, NotImplementedError or a SyntaxError. Note these type of ScriptErrors are not StandardError and will not be rescued unless it is specified explicitly (or its ancestor Exception).

Raised when a feature is not implemented on the current platform. For example, methods depending on the fsync or fork system calls may raise this exception if the underlying operating system or Ruby runtime does not support them.

Note that if fork raises a NotImplementedError, then respond_to?(:fork) returns false.

A generic error class raised when an invalid operation is attempted. Kernel#raise will raise a RuntimeError if no Exception class is specified.

raise "ouch"

raises the exception:

RuntimeError: ouch

No longer used by internal code.

OLEProperty helper class of Property with arguments.

Raised when an IO operation fails.

File.open("/etc/hosts") {|f| f << "example"}
  #=> IOError: not opened for writing

File.open("/etc/hosts") {|f| f.close; f.read }
  #=> IOError: closed stream

Note that some IO failures raise SystemCallErrors and these are not subclasses of IOError:

File.open("does/not/exist")
  #=> Errno::ENOENT: No such file or directory - does/not/exist
No documentation available

The exception class which will be raised when pushing into a closed Queue. See Queue#close and SizedQueue#close.

The Comparable mixin is used by classes whose objects may be ordered. The class must define the <=> operator, which compares the receiver against another object, returning a value less than 0, returning 0, or returning a value greater than 0, depending on whether the receiver is less than, equal to, or greater than the other object. If the other object is not comparable then the <=> operator should return nil. Comparable uses <=> to implement the conventional comparison operators (<, <=, ==, >=, and >) and the method between?.

class SizeMatters
  include Comparable
  attr :str
  def <=>(other)
    str.size <=> other.str.size
  end
  def initialize(str)
    @str = str
  end
  def inspect
    @str
  end
end

s1 = SizeMatters.new("Z")
s2 = SizeMatters.new("YY")
s3 = SizeMatters.new("XXX")
s4 = SizeMatters.new("WWWW")
s5 = SizeMatters.new("VVVVV")

s1 < s2                       #=> true
s4.between?(s1, s3)           #=> false
s4.between?(s3, s5)           #=> true
[ s3, s2, s5, s4, s1 ].sort   #=> [Z, YY, XXX, WWWW, VVVVV]

The Observer pattern (also known as publish/subscribe) provides a simple mechanism for one object to inform a set of interested third-party objects when its state changes.

Mechanism

The notifying class mixes in the Observable module, which provides the methods for managing the associated observer objects.

The observable object must:

An observer subscribes to updates using Observable#add_observer, which also specifies the method called via notify_observers. The default method for notify_observers is update.

Example

The following example demonstrates this nicely. A Ticker, when run, continually receives the stock Price for its @symbol. A Warner is a general observer of the price, and two warners are demonstrated, a WarnLow and a WarnHigh, which print a warning if the price is below or above their set limits, respectively.

The update callback allows the warners to run without being explicitly called. The system is set up with the Ticker and several observers, and the observers do their duty without the top-level code having to interfere.

Note that the contract between publisher and subscriber (observable and observer) is not declared or enforced. The Ticker publishes a time and a price, and the warners receive that. But if you don’t ensure that your contracts are correct, nothing else can warn you.

require "observer"

class Ticker          ### Periodically fetch a stock price.
  include Observable

  def initialize(symbol)
    @symbol = symbol
  end

  def run
    last_price = nil
    loop do
      price = Price.fetch(@symbol)
      print "Current price: #{price}\n"
      if price != last_price
        changed                 # notify observers
        last_price = price
        notify_observers(Time.now, price)
      end
      sleep 1
    end
  end
end

class Price           ### A mock class to fetch a stock price (60 - 140).
  def self.fetch(symbol)
    60 + rand(80)
  end
end

class Warner          ### An abstract observer of Ticker objects.
  def initialize(ticker, limit)
    @limit = limit
    ticker.add_observer(self)
  end
end

class WarnLow < Warner
  def update(time, price)       # callback for observer
    if price < @limit
      print "--- #{time.to_s}: Price below #@limit: #{price}\n"
    end
  end
end

class WarnHigh < Warner
  def update(time, price)       # callback for observer
    if price > @limit
      print "+++ #{time.to_s}: Price above #@limit: #{price}\n"
    end
  end
end

ticker = Ticker.new("MSFT")
WarnLow.new(ticker, 80)
WarnHigh.new(ticker, 120)
ticker.run

Produces:

Current price: 83
Current price: 75
--- Sun Jun 09 00:10:25 CDT 2002: Price below 80: 75
Current price: 90
Current price: 134
+++ Sun Jun 09 00:10:25 CDT 2002: Price above 120: 134
Current price: 134
Current price: 112
Current price: 79
--- Sun Jun 09 00:10:25 CDT 2002: Price below 80: 79

Usage with procs

The #notify_observers method can also be used with +proc+s by using the :call as func parameter.

The following example illustrates the use of a lambda:

require 'observer'

class Ticker
  include Observable

  def run
    # logic to retrieve the price (here 77.0)
    changed
    notify_observers(77.0)
  end
end

ticker = Ticker.new
warner = ->(price) { puts "New price received: #{price}" }
ticker.add_observer(warner, :call)
ticker.run
No documentation available

Secure random number generator interface.

This library is an interface to secure random number generators which are suitable for generating session keys in HTTP cookies, etc.

You can use this library in your application by requiring it:

require 'securerandom'

It supports the following secure random number generators:

SecureRandom is extended by the Random::Formatter module which defines the following methods:

These methods are usable as class methods of SecureRandom such as ‘SecureRandom.hex`.

Examples

Generate random hexadecimal strings:

require 'securerandom'

SecureRandom.hex(10) #=> "52750b30ffbc7de3b362"
SecureRandom.hex(10) #=> "92b15d6c8dc4beb5f559"
SecureRandom.hex(13) #=> "39b290146bea6ce975c37cfc23"

Generate random base64 strings:

SecureRandom.base64(10) #=> "EcmTPZwWRAozdA=="
SecureRandom.base64(10) #=> "KO1nIU+p9DKxGg=="
SecureRandom.base64(12) #=> "7kJSM/MzBJI+75j8"

Generate random binary strings:

SecureRandom.random_bytes(10) #=> "\016\t{\370g\310pbr\301"
SecureRandom.random_bytes(10) #=> "\323U\030TO\234\357\020\a\337"

Generate alphanumeric strings:

SecureRandom.alphanumeric(10) #=> "S8baxMJnPl"
SecureRandom.alphanumeric(10) #=> "aOxAg8BAJe"

Generate UUIDs:

SecureRandom.uuid #=> "2d931510-d99f-494a-8c67-87feb05e1594"
SecureRandom.uuid #=> "bad85eb9-0713-4da7-8d36-07a8e4b00eab"

The marshaling library converts collections of Ruby objects into a byte stream, allowing them to be stored outside the currently active script. This data may subsequently be read and the original objects reconstituted.

Marshaled data has major and minor version numbers stored along with the object information. In normal use, marshaling can only load data written with the same major version number and an equal or lower minor version number. If Ruby’s “verbose” flag is set (normally using -d, -v, -w, or –verbose) the major and minor numbers must match exactly. Marshal versioning is independent of Ruby’s version numbers. You can extract the version by reading the first two bytes of marshaled data.

str = Marshal.dump("thing")
RUBY_VERSION   #=> "1.9.0"
str[0].ord     #=> 4
str[1].ord     #=> 8

Some objects cannot be dumped: if the objects to be dumped include bindings, procedure or method objects, instances of class IO, or singleton objects, a TypeError will be raised.

If your class has special serialization needs (for example, if you want to serialize in some specific format), or if it contains objects that would otherwise not be serializable, you can implement your own serialization strategy.

There are two methods of doing this, your object can define either marshal_dump and marshal_load or _dump and _load. marshal_dump will take precedence over _dump if both are defined. marshal_dump may result in smaller Marshal strings.

Security considerations

By design, Marshal.load can deserialize almost any class loaded into the Ruby process. In many cases this can lead to remote code execution if the Marshal data is loaded from an untrusted source.

As a result, Marshal.load is not suitable as a general purpose serialization format and you should never unmarshal user supplied input or other untrusted data.

If you need to deserialize untrusted data, use JSON or another serialization format that is only able to load simple, ‘primitive’ types such as String, Array, Hash, etc. Never allow user input to specify arbitrary types to deserialize into.

marshal_dump and marshal_load

When dumping an object the method marshal_dump will be called. marshal_dump must return a result containing the information necessary for marshal_load to reconstitute the object. The result can be any object.

When loading an object dumped using marshal_dump the object is first allocated then marshal_load is called with the result from marshal_dump. marshal_load must recreate the object from the information in the result.

Example:

class MyObj
  def initialize name, version, data
    @name    = name
    @version = version
    @data    = data
  end

  def marshal_dump
    [@name, @version]
  end

  def marshal_load array
    @name, @version = array
  end
end

_dump and _load

Use _dump and _load when you need to allocate the object you’re restoring yourself.

When dumping an object the instance method _dump is called with an Integer which indicates the maximum depth of objects to dump (a value of -1 implies that you should disable depth checking). _dump must return a String containing the information necessary to reconstitute the object.

The class method _load should take a String and use it to return an object of the same class.

Example:

class MyObj
  def initialize name, version, data
    @name    = name
    @version = version
    @data    = data
  end

  def _dump level
    [@name, @version].join ':'
  end

  def self._load args
    new(*args.split(':'))
  end
end

Since Marshal.dump outputs a string you can have _dump return a Marshal string which is Marshal.loaded in _load for complex objects.

Mixin methods for –version and –platform Gem::Command options.

No documentation available

POP3 authentication error.

Potentially raised when a specification is validated.

This exception is raised if a parser error occurs.

No documentation available
No documentation available

Represents an SMTP authentication error.

No documentation available
Search took: 6ms  ·  Total Results: 3794