Finds the user’s home directory.
The home directory for the user.
The path to standard location of the user’s configuration directory.
The path to standard location of the user’s cache directory.
Default options for gem commands for Ruby implementers.
The options here should be structured as an array of string “gem” command names as keys and a string of the default options as values.
Example:
def self.platform_defaults
{ 'install' => '--no-rdoc --no-ri --env-shebang', 'update' => '--no-rdoc --no-ri --env-shebang' }
end
Returns the status of the last executed child process in the current thread.
Process.wait Process.spawn("ruby", "-e", "exit 13") Process.last_status #=> #<Process::Status: pid 4825 exit 13>
If no child process has ever been executed in the current thread, this returns nil
.
Process.last_status #=> nil
Returns a time returned by POSIX clock_gettime
() function.
p Process.clock_gettime(Process::CLOCK_MONOTONIC) #=> 896053.968060096
clock_id
specifies a kind of clock. It is specified as a constant which begins with Process::CLOCK_
such as Process::CLOCK_REALTIME
and Process::CLOCK_MONOTONIC
.
The supported constants depends on OS and version. Ruby provides following types of clock_id
if available.
CLOCK_REALTIME
SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1, macOS 10.12
CLOCK_MONOTONIC
SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4, macOS 10.12
CLOCK_PROCESS_CPUTIME_ID
SUSv3 to 4, Linux 2.5.63, FreeBSD 9.3, OpenBSD 5.4, macOS 10.12
CLOCK_THREAD_CPUTIME_ID
SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1, OpenBSD 5.4, macOS 10.12
CLOCK_VIRTUAL
FreeBSD 3.0, OpenBSD 2.1
CLOCK_PROF
FreeBSD 3.0, OpenBSD 2.1
CLOCK_REALTIME_FAST
FreeBSD 8.1
CLOCK_REALTIME_PRECISE
FreeBSD 8.1
CLOCK_REALTIME_COARSE
Linux 2.6.32
CLOCK_REALTIME_ALARM
Linux 3.0
CLOCK_MONOTONIC_FAST
FreeBSD 8.1
CLOCK_MONOTONIC_PRECISE
FreeBSD 8.1
CLOCK_MONOTONIC_COARSE
Linux 2.6.32
CLOCK_MONOTONIC_RAW
Linux 2.6.28, macOS 10.12
CLOCK_MONOTONIC_RAW_APPROX
macOS 10.12
CLOCK_BOOTTIME
Linux 2.6.39
CLOCK_BOOTTIME_ALARM
Linux 3.0
CLOCK_UPTIME
FreeBSD 7.0, OpenBSD 5.5
CLOCK_UPTIME_FAST
FreeBSD 8.1
CLOCK_UPTIME_RAW
macOS 10.12
CLOCK_UPTIME_RAW_APPROX
macOS 10.12
CLOCK_UPTIME_PRECISE
FreeBSD 8.1
CLOCK_SECOND
FreeBSD 8.1
CLOCK_TAI
Linux 3.10
Note that SUS stands for Single Unix Specification. SUS contains POSIX and clock_gettime
is defined in the POSIX part. SUS defines CLOCK_REALTIME
mandatory but CLOCK_MONOTONIC
, CLOCK_PROCESS_CPUTIME_ID
and CLOCK_THREAD_CPUTIME_ID
are optional.
Also, several symbols are accepted as clock_id
. There are emulations for clock_gettime
().
For example, Process::CLOCK_REALTIME
is defined as :GETTIMEOFDAY_BASED_CLOCK_REALTIME
when clock_gettime
() is not available.
Emulations for CLOCK_REALTIME
:
Use gettimeofday() defined by SUS. (SUSv4 obsoleted it, though.) The resolution is 1 microsecond.
Use time() defined by ISO C. The resolution is 1 second.
Emulations for CLOCK_MONOTONIC
:
Use mach_absolute_time(), available on Darwin. The resolution is CPU dependent.
Use the result value of times() defined by POSIX. POSIX defines it as “times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time)”. For example, GNU/Linux returns a value based on jiffies and it is monotonic. However, 4.4BSD uses gettimeofday() and it is not monotonic. (FreeBSD uses clock_gettime
(CLOCK_MONOTONIC
) instead, though.) The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and cannot represent over 497 days.
Emulations for CLOCK_PROCESS_CPUTIME_ID
:
Use getrusage() defined by SUS. getrusage() is used with RUSAGE_SELF to obtain the time only for the calling process (excluding the time for child processes). The result is addition of user time (ru_utime) and system time (ru_stime). The resolution is 1 microsecond.
Use times() defined by POSIX. The result is addition of user time (tms_utime) and system time (tms_stime). tms_cutime and tms_cstime are ignored to exclude the time for child processes. The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100, the resolution is 10 millisecond.
Use clock() defined by ISO C. The resolution is 1/CLOCKS_PER_SEC. CLOCKS_PER_SEC is the C-level macro defined by time.h. SUS defines CLOCKS_PER_SEC is 1000000. Non-Unix systems may define it a different value, though. If CLOCKS_PER_SEC is 1000000 as SUS, the resolution is 1 microsecond. If CLOCKS_PER_SEC is 1000000 and clock_t is 32 bits integer type, it cannot represent over 72 minutes.
If the given clock_id
is not supported, Errno::EINVAL is raised.
unit
specifies a type of the return value.
number of seconds as a float (default)
number of milliseconds as a float
number of microseconds as a float
number of seconds as an integer
number of milliseconds as an integer
number of microseconds as an integer
number of nanoseconds as an integer
The underlying function, clock_gettime
(), returns a number of nanoseconds. Float
object (IEEE 754 double) is not enough to represent the return value for CLOCK_REALTIME
. If the exact nanoseconds value is required, use :nanoseconds
as the unit
.
The origin (zero) of the returned value varies. For example, system start up time, process start up time, the Epoch, etc.
The origin in CLOCK_REALTIME
is defined as the Epoch (1970-01-01 00:00:00 UTC). But some systems count leap seconds and others doesn’t. So the result can be interpreted differently across systems. Time.now
is recommended over CLOCK_REALTIME
.
@return [String] An error message that includes requirement trees,
which is much more detailed & customizable than the default message
@param [Hash] opts the options to create a message with. @option opts [String] :solver_name The user-facing name of the solver @option opts [String] :possibility_type The generic name of a possibility @option opts [Proc] :reduce_trees A proc that reduced the list of requirement trees @option opts [Proc] :printable_requirement A proc that pretty-prints requirements @option opts [Proc] :additional_message_for_conflict A proc that appends additional
messages for each conflict
@option opts [Proc] :version_for_spec A proc that returns the version number for a
possibility
Determines whether the given ‘requirement` is satisfied by the given `spec`, in the context of the current `activated` dependency graph.
@param [Object] requirement @param [DependencyGraph] activated the current dependency graph in the
resolution process.
@param [Object] spec @return [Boolean] whether ‘requirement` is satisfied by `spec` in the
context of the current `activated` dependency graph.
Parses the current JSON
text source and returns the complete data structure as a result.
Creates a new DH
instance from scratch by generating the private and public components alike.
size is an integer representing the desired key size. Keys smaller than 1024 bits should be considered insecure.
generator is a small number > 1, typically 2 or 5.
Indicates whether this DH
instance has a private key associated with it or not. The private key may be retrieved with DH#priv_key.
Creates a new DSA
instance by generating a private/public key pair from scratch.
size is an integer representing the desired key size.
Indicates whether this DSA
instance has a private key associated with it or not. The private key may be retrieved with DSA#private_key.
Creates a new EC
instance with a new random private and public key.
Returns whether this EC
instance has a private key. The private key (BN
) can be retrieved with EC#private_key
.
Generates an RSA
keypair. size is an integer representing the desired key size. Keys smaller than 1024 should be considered insecure. exponent is an odd number normally 3, 17, or 65537.
Does this keypair contain a private key?
A description of the current connection state. This is for diagnostic purposes only.
Sets the time used in the verification. If not set, the current time is used.