newton.rb
Solves the nonlinear algebraic equation system f = 0 by Newton’s method. This program is not dependent on BigDecimal
.
To call:
n = nlsolve(f,x) where n is the number of iterations required, x is the initial value vector f is an Object which is used to compute the values of the equations to be solved.
It must provide the following methods:
returns the values of all functions at x
returns 0.0
returns 1.0
returns 2.0
returns 10.0
returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.
On exit, x is the solution vector.
This module provides a framework for message digest libraries.
You may want to look at OpenSSL::Digest
as it supports more algorithms.
A cryptographic hash function is a procedure that takes data and returns a fixed bit string: the hash value, also known as digest. Hash
functions are also called one-way functions, it is easy to compute a digest from a message, but it is infeasible to generate a message from a digest.
require 'digest' # Compute a complete digest Digest::SHA256.digest 'message' #=> "\xABS\n\x13\xE4Y..." sha256 = Digest::SHA256.new sha256.digest 'message' #=> "\xABS\n\x13\xE4Y..." # Other encoding formats Digest::SHA256.hexdigest 'message' #=> "ab530a13e459..." Digest::SHA256.base64digest 'message' #=> "q1MKE+RZFJgr..." # Compute digest by chunks md5 = Digest::MD5.new md5.update 'message1' md5 << 'message2' # << is an alias for update md5.hexdigest #=> "94af09c09bb9..." # Compute digest for a file sha256 = Digest::SHA256.file 'testfile' sha256.hexdigest
Additionally digests can be encoded in “bubble babble” format as a sequence of consonants and vowels which is more recognizable and comparable than a hexadecimal digest.
require 'digest/bubblebabble' Digest::SHA256.bubblebabble 'message' #=> "xopoh-fedac-fenyh-..."
See the bubble babble specification at web.mit.edu/kenta/www/one/bubblebabble/spec/jrtrjwzi/draft-huima-01.txt.
Digest
algorithms Different digest algorithms (or hash functions) are available:
MD5
See RFC 1321 The MD5
Message-Digest Algorithm
As Digest::RMD160
. See homes.esat.kuleuven.be/~bosselae/ripemd160.html.
SHA1
See FIPS 180 Secure Hash
Standard.
SHA2
family
See FIPS 180 Secure Hash
Standard which defines the following algorithms:
SHA512
SHA384
SHA256
The latest versions of the FIPS publications can be found here: csrc.nist.gov/publications/PubsFIPS.html.
Psych
is a YAML
parser and emitter. Psych
leverages libyaml [Home page: pyyaml.org/wiki/LibYAML] or [HG repo: bitbucket.org/xi/libyaml] for its YAML
parsing and emitting capabilities. In addition to wrapping libyaml, Psych
also knows how to serialize and de-serialize most Ruby objects to and from the YAML
format.
YAML
RIGHT NOW! # Parse some YAML Psych.load("--- foo") # => "foo" # Emit some YAML Psych.dump("foo") # => "--- foo\n...\n" { :a => 'b'}.to_yaml # => "---\n:a: b\n"
Got more time on your hands? Keep on reading!
YAML
Parsing Psych
provides a range of interfaces for parsing a YAML
document ranging from low level to high level, depending on your parsing needs. At the lowest level, is an event based parser. Mid level is access to the raw YAML
AST, and at the highest level is the ability to unmarshal YAML
to Ruby objects.
YAML
Emitting Psych
provides a range of interfaces ranging from low to high level for producing YAML
documents. Very similar to the YAML
parsing interfaces, Psych
provides at the lowest level, an event based system, mid-level is building a YAML
AST, and the highest level is converting a Ruby object straight to a YAML
document.
The high level YAML
parser provided by Psych
simply takes YAML
as input and returns a Ruby data structure. For information on using the high level parser see Psych.load
Psych.safe_load("--- a") # => 'a' Psych.safe_load("---\n - a\n - b") # => ['a', 'b'] # From a trusted string: Psych.load("--- !ruby/range\nbegin: 0\nend: 42\nexcl: false\n") # => 0..42
Psych.safe_load_file("data.yml", permitted_classes: [Date]) Psych.load_file("trusted_database.yml")
Exception
handling begin # The second argument changes only the exception contents Psych.parse("--- `", "file.txt") rescue Psych::SyntaxError => ex ex.file # => 'file.txt' ex.message # => "(file.txt): found character that cannot start any token" end
The high level emitter has the easiest interface. Psych
simply takes a Ruby data structure and converts it to a YAML
document. See Psych.dump
for more information on dumping a Ruby data structure.
# Dump an array, get back a YAML string Psych.dump(['a', 'b']) # => "---\n- a\n- b\n" # Dump an array to an IO object Psych.dump(['a', 'b'], StringIO.new) # => #<StringIO:0x000001009d0890> # Dump an array with indentation set Psych.dump(['a', ['b']], :indentation => 3) # => "---\n- a\n- - b\n" # Dump an array to an IO with indentation set Psych.dump(['a', ['b']], StringIO.new, :indentation => 3)
Currently there is no direct API for dumping Ruby structure to file:
File.open('database.yml', 'w') do |file| file.write(Psych.dump(['a', 'b'])) end
Psych
provides access to an AST produced from parsing a YAML
document. This tree is built using the Psych::Parser
and Psych::TreeBuilder
. The AST can be examined and manipulated freely. Please see Psych::parse_stream
, Psych::Nodes
, and Psych::Nodes::Node
for more information on dealing with YAML
syntax trees.
# Returns Psych::Nodes::Stream Psych.parse_stream("---\n - a\n - b") # Returns Psych::Nodes::Document Psych.parse("---\n - a\n - b")
# Returns Psych::Nodes::Stream Psych.parse_stream(File.read('database.yml')) # Returns Psych::Nodes::Document Psych.parse_file('database.yml')
Exception
handling begin # The second argument changes only the exception contents Psych.parse("--- `", "file.txt") rescue Psych::SyntaxError => ex ex.file # => 'file.txt' ex.message # => "(file.txt): found character that cannot start any token" end
At the mid level is building an AST. This AST is exactly the same as the AST used when parsing a YAML
document. Users can build an AST by hand and the AST knows how to emit itself as a YAML
document. See Psych::Nodes
, Psych::Nodes::Node
, and Psych::TreeBuilder
for more information on building a YAML
AST.
# We need Psych::Nodes::Stream (not Psych::Nodes::Document) stream = Psych.parse_stream("---\n - a\n - b") stream.to_yaml # => "---\n- a\n- b\n"
# We need Psych::Nodes::Stream (not Psych::Nodes::Document) stream = Psych.parse_stream(File.read('database.yml')) File.open('database.yml', 'w') do |file| file.write(stream.to_yaml) end
The lowest level parser should be used when the YAML
input is already known, and the developer does not want to pay the price of building an AST or automatic detection and conversion to Ruby objects. See Psych::Parser
for more information on using the event based parser.
Psych::Nodes::Stream
structure parser = Psych::Parser.new(TreeBuilder.new) # => #<Psych::Parser> parser = Psych.parser # it's an alias for the above parser.parse("---\n - a\n - b") # => #<Psych::Parser> parser.handler # => #<Psych::TreeBuilder> parser.handler.root # => #<Psych::Nodes::Stream>
recorder = Psych::Handlers::Recorder.new parser = Psych::Parser.new(recorder) parser.parse("---\n - a\n - b") recorder.events # => [list of [event, args] lists] # event is one of: Psych::Handler::EVENTS # args are the arguments passed to the event
The lowest level emitter is an event based system. Events are sent to a Psych::Emitter
object. That object knows how to convert the events to a YAML
document. This interface should be used when document format is known in advance or speed is a concern. See Psych::Emitter
for more information.
Psych.parser.parse("--- a") # => #<Psych::Parser> parser.handler.first # => #<Psych::Nodes::Stream> parser.handler.first.to_ruby # => ["a"] parser.handler.root.first # => #<Psych::Nodes::Document> parser.handler.root.first.to_ruby # => "a" # You can instantiate an Emitter manually Psych::Visitors::ToRuby.new.accept(parser.handler.root.first) # => "a"
The Readline
module provides interface for GNU Readline
. This module defines a number of methods to facilitate completion and accesses input history from the Ruby interpreter. This module supported Edit Line(libedit) too. libedit is compatible with GNU Readline
.
Reads one inputted line with line edit by Readline.readline
method. At this time, the facilitatation completion and the key bind like Emacs can be operated like GNU Readline
.
require "readline" while buf = Readline.readline("> ", true) p buf end
The content that the user input can be recorded to the history. The history can be accessed by Readline::HISTORY
constant.
require "readline" while buf = Readline.readline("> ", true) p Readline::HISTORY.to_a print("-> ", buf, "\n") end
Documented by Kouji Takao <kouji dot takao at gmail dot com>.
FileTest
implements file test operations similar to those used in File::Stat
. It exists as a standalone module, and its methods are also insinuated into the File
class. (Note that this is not done by inclusion: the interpreter cheats).
Calculates the set of unambiguous abbreviations for a given set of strings.
require 'abbrev' require 'pp' pp Abbrev.abbrev(['ruby']) #=> {"ruby"=>"ruby", "rub"=>"ruby", "ru"=>"ruby", "r"=>"ruby"} pp Abbrev.abbrev(%w{ ruby rules })
Generates:
{ "ruby" => "ruby", "rub" => "ruby", "rules" => "rules", "rule" => "rules", "rul" => "rules" }
It also provides an array core extension, Array#abbrev
.
pp %w{ summer winter }.abbrev
Generates:
{ "summer" => "summer", "summe" => "summer", "summ" => "summer", "sum" => "summer", "su" => "summer", "s" => "summer", "winter" => "winter", "winte" => "winter", "wint" => "winter", "win" => "winter", "wi" => "winter", "w" => "winter" }
The Forwardable module provides delegation of specified methods to a designated object, using the methods def_delegator
and def_delegators
.
For example, say you have a class RecordCollection which contains an array @records
. You could provide the lookup method record_number(), which simply calls [] on the @records
array, like this:
require 'forwardable' class RecordCollection attr_accessor :records extend Forwardable def_delegator :@records, :[], :record_number end
We can use the lookup method like so:
r = RecordCollection.new r.records = [4,5,6] r.record_number(0) # => 4
Further, if you wish to provide the methods size, <<, and map, all of which delegate to @records, this is how you can do it:
class RecordCollection # re-open RecordCollection class def_delegators :@records, :size, :<<, :map end r = RecordCollection.new r.records = [1,2,3] r.record_number(0) # => 1 r.size # => 3 r << 4 # => [1, 2, 3, 4] r.map { |x| x * 2 } # => [2, 4, 6, 8]
You can even extend regular objects with Forwardable.
my_hash = Hash.new my_hash.extend Forwardable # prepare object for delegation my_hash.def_delegator "STDOUT", "puts" # add delegation for STDOUT.puts() my_hash.puts "Howdy!"
You could use Forwardable as an alternative to inheritance, when you don’t want to inherit all methods from the superclass. For instance, here is how you might add a range of Array
instance methods to a new class Queue
:
class Queue extend Forwardable def initialize @q = [ ] # prepare delegate object end # setup preferred interface, enq() and deq()... def_delegator :@q, :push, :enq def_delegator :@q, :shift, :deq # support some general Array methods that fit Queues well def_delegators :@q, :clear, :first, :push, :shift, :size end q = Queue.new q.enq 1, 2, 3, 4, 5 q.push 6 q.shift # => 1 while q.size > 0 puts q.deq end q.enq "Ruby", "Perl", "Python" puts q.first q.clear puts q.first
This should output:
2 3 4 5 6 Ruby nil
Be advised, RDoc
will not detect delegated methods.
forwardable.rb
provides single-method delegation via the def_delegator
and def_delegators
methods. For full-class delegation via DelegateClass, see delegate.rb
.
SingleForwardable
can be used to setup delegation at the object level as well.
printer = String.new printer.extend SingleForwardable # prepare object for delegation printer.def_delegator "STDOUT", "puts" # add delegation for STDOUT.puts() printer.puts "Howdy!"
Also, SingleForwardable
can be used to set up delegation for a Class
or Module
.
class Implementation def self.service puts "serviced!" end end module Facade extend SingleForwardable def_delegator :Implementation, :service end Facade.service #=> serviced!
If you want to use both Forwardable and SingleForwardable
, you can use methods def_instance_delegator and def_single_delegator
, etc.
This library is an interface to secure random number generators which are suitable for generating session keys in HTTP cookies, etc.
You can use this library in your application by requiring it:
require 'securerandom'
It supports the following secure random number generators:
openssl
/dev/urandom
SecureRandom
is extended by the Random::Formatter
module which defines the following methods:
alphanumeric
base64
choose
hex
rand
random_bytes
random_number
urlsafe_base64
uuid
These methods are usable as class methods of SecureRandom
such as ‘SecureRandom.hex`.
Generate random hexadecimal strings:
require 'securerandom' SecureRandom.hex(10) #=> "52750b30ffbc7de3b362" SecureRandom.hex(10) #=> "92b15d6c8dc4beb5f559" SecureRandom.hex(13) #=> "39b290146bea6ce975c37cfc23"
Generate random base64 strings:
SecureRandom.base64(10) #=> "EcmTPZwWRAozdA==" SecureRandom.base64(10) #=> "KO1nIU+p9DKxGg==" SecureRandom.base64(12) #=> "7kJSM/MzBJI+75j8"
Generate random binary strings:
SecureRandom.random_bytes(10) #=> "\016\t{\370g\310pbr\301" SecureRandom.random_bytes(10) #=> "\323U\030TO\234\357\020\a\337"
Generate alphanumeric strings:
SecureRandom.alphanumeric(10) #=> "S8baxMJnPl" SecureRandom.alphanumeric(10) #=> "aOxAg8BAJe"
Generate UUIDs:
SecureRandom.uuid #=> "2d931510-d99f-494a-8c67-87feb05e1594" SecureRandom.uuid #=> "bad85eb9-0713-4da7-8d36-07a8e4b00eab"
This module manipulates strings according to the word parsing rules of the UNIX Bourne shell.
The shellwords() function was originally a port of shellwords.pl, but modified to conform to the Shell & Utilities volume of the IEEE Std 1003.1-2008, 2016 Edition [1].
You can use Shellwords
to parse a string into a Bourne shell friendly Array
.
require 'shellwords' argv = Shellwords.split('three blind "mice"') argv #=> ["three", "blind", "mice"]
Once you’ve required Shellwords
, you can use the split alias String#shellsplit
.
argv = "see how they run".shellsplit argv #=> ["see", "how", "they", "run"]
They treat quotes as special characters, so an unmatched quote will cause an ArgumentError
.
argv = "they all ran after the farmer's wife".shellsplit #=> ArgumentError: Unmatched quote: ...
Shellwords
also provides methods that do the opposite. Shellwords.escape
, or its alias, String#shellescape
, escapes shell metacharacters in a string for use in a command line.
filename = "special's.txt" system("cat -- #{filename.shellescape}") # runs "cat -- special\\'s.txt"
Note the ‘–’. Without it, cat(1) will treat the following argument as a command line option if it starts with ‘-’. It is guaranteed that Shellwords.escape
converts a string to a form that a Bourne shell will parse back to the original string, but it is the programmer’s responsibility to make sure that passing an arbitrary argument to a command does no harm.
Shellwords
also comes with a core extension for Array
, Array#shelljoin
.
dir = "Funny GIFs" argv = %W[ls -lta -- #{dir}] system(argv.shelljoin + " | less") # runs "ls -lta -- Funny\\ GIFs | less"
You can use this method to build a complete command line out of an array of arguments.
Wakou Aoyama
Akinori MUSHA <knu@iDaemons.org>
Akinori MUSHA <knu@iDaemons.org> (current maintainer)
1: IEEE Std 1003.1-2008, 2016 Edition, the Shell & Utilities volume
The Singleton
module implements the Singleton
pattern.
To use Singleton
, include the module in your class.
class Klass include Singleton # ... end
This ensures that only one instance of Klass can be created.
a,b = Klass.instance, Klass.instance a == b # => true Klass.new # => NoMethodError - new is private ...
The instance is created at upon the first call of Klass.instance().
class OtherKlass include Singleton # ... end ObjectSpace.each_object(OtherKlass){} # => 0 OtherKlass.instance ObjectSpace.each_object(OtherKlass){} # => 1
This behavior is preserved under inheritance and cloning.
This above is achieved by:
Making Klass.new and Klass.allocate private.
Overriding Klass.inherited(sub_klass) and Klass.clone() to ensure that the Singleton
properties are kept when inherited and cloned.
Providing the Klass.instance() method that returns the same object each time it is called.
Overriding Klass._load(str) to call Klass.instance().
Overriding Klass#clone and Klass#dup to raise TypeErrors to prevent cloning or duping.
Singleton
and Marshal
By default Singleton’s _dump(depth)
returns the empty string. Marshalling by default will strip state information, e.g. instance variables from the instance. Classes using Singleton
can provide custom _load(str) and _dump(depth) methods to retain some of the previous state of the instance.
require 'singleton' class Example include Singleton attr_accessor :keep, :strip def _dump(depth) # this strips the @strip information from the instance Marshal.dump(@keep, depth) end def self._load(str) instance.keep = Marshal.load(str) instance end end a = Example.instance a.keep = "keep this" a.strip = "get rid of this" stored_state = Marshal.dump(a) a.keep = nil a.strip = nil b = Marshal.load(stored_state) p a == b # => true p a.keep # => "keep this" p a.strip # => nil
TSort
implements topological sorting using Tarjan’s algorithm for strongly connected components.
TSort
is designed to be able to be used with any object which can be interpreted as a directed graph.
TSort
requires two methods to interpret an object as a graph, tsort_each_node
and tsort_each_child.
tsort_each_node
is used to iterate for all nodes over a graph.
tsort_each_child
is used to iterate for child nodes of a given node.
The equality of nodes are defined by eql? and hash since TSort
uses Hash
internally.
The following example demonstrates how to mix the TSort
module into an existing class (in this case, Hash
). Here, we’re treating each key in the hash as a node in the graph, and so we simply alias the required tsort_each_node
method to Hash’s each_key method. For each key in the hash, the associated value is an array of the node’s child nodes. This choice in turn leads to our implementation of the required tsort_each_child
method, which fetches the array of child nodes and then iterates over that array using the user-supplied block.
require 'tsort' class Hash include TSort alias tsort_each_node each_key def tsort_each_child(node, &block) fetch(node).each(&block) end end {1=>[2, 3], 2=>[3], 3=>[], 4=>[]}.tsort #=> [3, 2, 1, 4] {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}.strongly_connected_components #=> [[4], [2, 3], [1]]
A very simple ‘make’ like tool can be implemented as follows:
require 'tsort' class Make def initialize @dep = {} @dep.default = [] end def rule(outputs, inputs=[], &block) triple = [outputs, inputs, block] outputs.each {|f| @dep[f] = [triple]} @dep[triple] = inputs end def build(target) each_strongly_connected_component_from(target) {|ns| if ns.length != 1 fs = ns.delete_if {|n| Array === n} raise TSort::Cyclic.new("cyclic dependencies: #{fs.join ', '}") end n = ns.first if Array === n outputs, inputs, block = n inputs_time = inputs.map {|f| File.mtime f}.max begin outputs_time = outputs.map {|f| File.mtime f}.min rescue Errno::ENOENT outputs_time = nil end if outputs_time == nil || inputs_time != nil && outputs_time <= inputs_time sleep 1 if inputs_time != nil && inputs_time.to_i == Time.now.to_i block.call end end } end def tsort_each_child(node, &block) @dep[node].each(&block) end include TSort end def command(arg) print arg, "\n" system arg end m = Make.new m.rule(%w[t1]) { command 'date > t1' } m.rule(%w[t2]) { command 'date > t2' } m.rule(%w[t3]) { command 'date > t3' } m.rule(%w[t4], %w[t1 t3]) { command 'cat t1 t3 > t4' } m.rule(%w[t5], %w[t4 t2]) { command 'cat t4 t2 > t5' } m.build('t5')
‘tsort.rb’ is wrong name because this library uses Tarjan’s algorithm for strongly connected components. Although ‘strongly_connected_components.rb’ is correct but too long.
Tarjan, “Depth First Search and Linear Graph Algorithms”,
SIAM Journal on Computing, Vol. 1, No. 2, pp. 146-160, June 1972.
define UnicodeNormalize
module here so that we don’t have to look it up
This exception is raised if a parser error occurs.
This exception is raised if the nesting of parsed data structures is too deep.
Psych::Stream
is a streaming YAML
emitter. It will not buffer your YAML
, but send it straight to an IO
.
Here is an example use:
stream = Psych::Stream.new($stdout) stream.start stream.push({:foo => 'bar'}) stream.finish
YAML
will be immediately emitted to $stdout with no buffering.
Psych::Stream#start
will take a block and ensure that Psych::Stream#finish
is called, so you can do this form:
stream = Psych::Stream.new($stdout) stream.start do |em| em.push(:foo => 'bar') end
Subclass of Zlib::Error
When zlib returns a Z_STREAM_END is return if the end of the compressed data has been reached and all uncompressed out put has been produced.
Subclass of Zlib::Error
. This error is raised when the zlib stream is currently in progress.
For example:
inflater = Zlib::Inflate.new inflater.inflate(compressed) do inflater.inflate(compressed) # Raises Zlib::InProgressError end
Zlib::ZStream
is the abstract class for the stream which handles the compressed data. The operations are defined in the subclasses: Zlib::Deflate
for compression, and Zlib::Inflate
for decompression.
An instance of Zlib::ZStream
has one stream (struct zstream in the source) and two variable-length buffers which associated to the input (next_in) of the stream and the output (next_out) of the stream. In this document, “input buffer” means the buffer for input, and “output buffer” means the buffer for output.
Data input into an instance of Zlib::ZStream
are temporally stored into the end of input buffer, and then data in input buffer are processed from the beginning of the buffer until no more output from the stream is produced (i.e. until avail_out
> 0 after processing). During processing, output buffer is allocated and expanded automatically to hold all output data.
Some particular instance methods consume the data in output buffer and return them as a String
.
Here is an ascii art for describing above:
+================ an instance of Zlib::ZStream ================+ || || || +--------+ +-------+ +--------+ || || +--| output |<---------|zstream|<---------| input |<--+ || || | | buffer | next_out+-------+next_in | buffer | | || || | +--------+ +--------+ | || || | | || +===|======================================================|===+ | | v | "output data" "input data"
If an error occurs during processing input buffer, an exception which is a subclass of Zlib::Error
is raised. At that time, both input and output buffer keep their conditions at the time when the error occurs.
Method
Catalogue Many of the methods in this class are fairly low-level and unlikely to be of interest to users. In fact, users are unlikely to use this class directly; rather they will be interested in Zlib::Inflate
and Zlib::Deflate
.
The higher level methods are listed below.
exception to wait for reading by EINPROGRESS. see IO.select
.