Method
objects are created by Object#method
, and are associated with a particular object (not just with a class). They may be used to invoke the method within the object, and as a block associated with an iterator. They may also be unbound from one object (creating an UnboundMethod
) and bound to another.
class Thing def square(n) n*n end end thing = Thing.new meth = thing.method(:square) meth.call(9) #=> 81 [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9] [ 1, 2, 3 ].each(&method(:puts)) #=> prints 1, 2, 3 require 'date' %w[2017-03-01 2017-03-02].collect(&Date.method(:parse)) #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
static VALUE
rb_method_compose_to_left(VALUE self, VALUE g)
{
g = to_callable(g);
self = method_to_proc(self);
return proc_compose_to_left(self, g);
}
Returns a proc that is the composition of this method and the given g. The returned proc takes a variable number of arguments, calls g with them then calls this method with the result.
def f(x) x * x end f = self.method(:f) g = proc {|x| x + x } p (f << g).call(2) #=> 16
static VALUE
method_eq(VALUE method, VALUE other)
{
struct METHOD *m1, *m2;
VALUE klass1, klass2;
if (!rb_obj_is_method(other))
return Qfalse;
if (CLASS_OF(method) != CLASS_OF(other))
return Qfalse;
Check_TypedStruct(method, &method_data_type);
m1 = (struct METHOD *)DATA_PTR(method);
m2 = (struct METHOD *)DATA_PTR(other);
klass1 = method_entry_defined_class(m1->me);
klass2 = method_entry_defined_class(m2->me);
if (!rb_method_entry_eq(m1->me, m2->me) ||
klass1 != klass2 ||
m1->klass != m2->klass ||
m1->recv != m2->recv) {
return Qfalse;
}
return Qtrue;
}
Two method objects are equal if they are bound to the same object and refer to the same method definition and the classes defining the methods are the same class or module.
static VALUE
rb_method_compose_to_right(VALUE self, VALUE g)
{
g = to_callable(g);
self = method_to_proc(self);
return proc_compose_to_right(self, g);
}
Returns a proc that is the composition of this method and the given g. The returned proc takes a variable number of arguments, calls this method with them then calls g with the result.
def f(x) x * x end f = self.method(:f) g = proc {|x| x + x } p (f >> g).call(2) #=> 8
static VALUE
method_arity_m(VALUE method)
{
int n = method_arity(method);
return INT2FIX(n);
}
Returns an indication of the number of arguments accepted by a method. Returns a nonnegative integer for methods that take a fixed number of arguments. For Ruby methods that take a variable number of arguments, returns -n-1, where n is the number of required arguments. Keyword arguments will be considered as a single additional argument, that argument being mandatory if any keyword argument is mandatory. For methods written in C, returns -1 if the call takes a variable number of arguments.
class C def one; end def two(a); end def three(*a); end def four(a, b); end def five(a, b, *c); end def six(a, b, *c, &d); end def seven(a, b, x:0); end def eight(x:, y:); end def nine(x:, y:, **z); end def ten(*a, x:, y:); end end c = C.new c.method(:one).arity #=> 0 c.method(:two).arity #=> 1 c.method(:three).arity #=> -1 c.method(:four).arity #=> 2 c.method(:five).arity #=> -3 c.method(:six).arity #=> -3 c.method(:seven).arity #=> -3 c.method(:eight).arity #=> 1 c.method(:nine).arity #=> 1 c.method(:ten).arity #=> -2 "cat".method(:size).arity #=> 0 "cat".method(:replace).arity #=> 1 "cat".method(:squeeze).arity #=> -1 "cat".method(:count).arity #=> -1
static VALUE
rb_method_call_pass_called_kw(int argc, const VALUE *argv, VALUE method)
{
VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
return rb_method_call_with_block_kw(argc, argv, method, procval, RB_PASS_CALLED_KEYWORDS);
}
Invokes the meth with the specified arguments, returning the method’s return value.
m = 12.method("+") m.call(3) #=> 15 m.call(20) #=> 32
static VALUE
method_clone(VALUE self)
{
VALUE clone;
struct METHOD *orig, *data;
TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
CLONESETUP(clone, self);
RB_OBJ_WRITE(clone, &data->recv, orig->recv);
RB_OBJ_WRITE(clone, &data->klass, orig->klass);
RB_OBJ_WRITE(clone, &data->iclass, orig->iclass);
RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me));
return clone;
}
Returns a clone of this method.
class A def foo return "bar" end end m = A.new.method(:foo) m.call # => "bar" n = m.clone.call # => "bar"
static VALUE
rb_method_curry(int argc, const VALUE *argv, VALUE self)
{
VALUE proc = method_to_proc(self);
return proc_curry(argc, argv, proc);
}
Returns a curried proc based on the method. When the proc is called with a number of arguments that is lower than the method’s arity, then another curried proc is returned. Only when enough arguments have been supplied to satisfy the method signature, will the method actually be called.
The optional arity argument should be supplied when currying methods with variable arguments to determine how many arguments are needed before the method is called.
def foo(a,b,c) [a, b, c] end proc = self.method(:foo).curry proc2 = proc.call(1, 2) #=> #<Proc> proc2.call(3) #=> [1,2,3] def vararg(*args) args end proc = self.method(:vararg).curry(4) proc2 = proc.call(:x) #=> #<Proc> proc3 = proc2.call(:y, :z) #=> #<Proc> proc3.call(:a) #=> [:x, :y, :z, :a]
static VALUE
method_hash(VALUE method)
{
struct METHOD *m;
st_index_t hash;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, m);
hash = rb_hash_start((st_index_t)m->recv);
hash = rb_hash_method_entry(hash, m->me);
hash = rb_hash_end(hash);
return ST2FIX(hash);
}
Returns a hash value corresponding to the method object.
See also Object#hash
.
static VALUE
method_inspect(VALUE method)
{
struct METHOD *data;
VALUE str;
const char *sharp = "#";
VALUE mklass;
VALUE defined_class;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
str = rb_sprintf("#<% "PRIsVALUE": ", rb_obj_class(method));
mklass = data->iclass;
if (!mklass) mklass = data->klass;
if (RB_TYPE_P(mklass, T_ICLASS)) {
/* TODO: I'm not sure why mklass is T_ICLASS.
* UnboundMethod#bind() can set it as T_ICLASS at convert_umethod_to_method_components()
* but not sure it is needed.
*/
mklass = RBASIC_CLASS(mklass);
}
if (data->me->def->type == VM_METHOD_TYPE_ALIAS) {
defined_class = data->me->def->body.alias.original_me->owner;
}
else {
defined_class = method_entry_defined_class(data->me);
}
if (RB_TYPE_P(defined_class, T_ICLASS)) {
defined_class = RBASIC_CLASS(defined_class);
}
if (FL_TEST(mklass, FL_SINGLETON)) {
VALUE v = rb_ivar_get(mklass, attached);
if (data->recv == Qundef) {
rb_str_buf_append(str, rb_inspect(mklass));
}
else if (data->recv == v) {
rb_str_buf_append(str, rb_inspect(v));
sharp = ".";
}
else {
rb_str_buf_append(str, rb_inspect(data->recv));
rb_str_buf_cat2(str, "(");
rb_str_buf_append(str, rb_inspect(v));
rb_str_buf_cat2(str, ")");
sharp = ".";
}
}
else {
mklass = data->klass;
if (FL_TEST(mklass, FL_SINGLETON)) {
VALUE v = rb_ivar_get(mklass, attached);
if (!(RB_TYPE_P(v, T_CLASS) || RB_TYPE_P(v, T_MODULE))) {
do {
mklass = RCLASS_SUPER(mklass);
} while (RB_TYPE_P(mklass, T_ICLASS));
}
}
rb_str_buf_append(str, rb_inspect(mklass));
if (defined_class != mklass) {
rb_str_catf(str, "(% "PRIsVALUE")", defined_class);
}
}
rb_str_buf_cat2(str, sharp);
rb_str_append(str, rb_id2str(data->me->called_id));
if (data->me->called_id != data->me->def->original_id) {
rb_str_catf(str, "(%"PRIsVALUE")",
rb_id2str(data->me->def->original_id));
}
if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) {
rb_str_buf_cat2(str, " (not-implemented)");
}
// parameter information
{
VALUE params = rb_method_parameters(method);
VALUE pair, name, kind;
const VALUE req = ID2SYM(rb_intern("req"));
const VALUE opt = ID2SYM(rb_intern("opt"));
const VALUE keyreq = ID2SYM(rb_intern("keyreq"));
const VALUE key = ID2SYM(rb_intern("key"));
const VALUE rest = ID2SYM(rb_intern("rest"));
const VALUE keyrest = ID2SYM(rb_intern("keyrest"));
const VALUE block = ID2SYM(rb_intern("block"));
const VALUE nokey = ID2SYM(rb_intern("nokey"));
int forwarding = 0;
rb_str_buf_cat2(str, "(");
for (int i = 0; i < RARRAY_LEN(params); i++) {
pair = RARRAY_AREF(params, i);
kind = RARRAY_AREF(pair, 0);
name = RARRAY_AREF(pair, 1);
// FIXME: in tests it turns out that kind, name = [:req] produces name to be false. Why?..
if (NIL_P(name) || name == Qfalse) {
// FIXME: can it be reduced to switch/case?
if (kind == req || kind == opt) {
name = rb_str_new2("_");
}
else if (kind == rest || kind == keyrest) {
name = rb_str_new2("");
}
else if (kind == block) {
name = rb_str_new2("block");
}
else if (kind == nokey) {
name = rb_str_new2("nil");
}
}
if (kind == req) {
rb_str_catf(str, "%"PRIsVALUE, name);
}
else if (kind == opt) {
rb_str_catf(str, "%"PRIsVALUE"=...", name);
}
else if (kind == keyreq) {
rb_str_catf(str, "%"PRIsVALUE":", name);
}
else if (kind == key) {
rb_str_catf(str, "%"PRIsVALUE": ...", name);
}
else if (kind == rest) {
if (name == ID2SYM('*')) {
forwarding = 1;
rb_str_cat_cstr(str, "...");
}
else {
rb_str_catf(str, "*%"PRIsVALUE, name);
}
}
else if (kind == keyrest) {
rb_str_catf(str, "**%"PRIsVALUE, name);
}
else if (kind == block) {
if (name == ID2SYM('&')) {
if (forwarding) {
rb_str_set_len(str, RSTRING_LEN(str) - 2);
}
else {
rb_str_cat_cstr(str, "...");
}
}
else {
rb_str_catf(str, "&%"PRIsVALUE, name);
}
}
else if (kind == nokey) {
rb_str_buf_cat2(str, "**nil");
}
if (i < RARRAY_LEN(params) - 1) {
rb_str_buf_cat2(str, ", ");
}
}
rb_str_buf_cat2(str, ")");
}
{ // source location
VALUE loc = rb_method_location(method);
if (!NIL_P(loc)) {
rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE,
RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1));
}
}
rb_str_buf_cat2(str, ">");
return str;
}
Returns a human-readable description of the underlying method.
"cat".method(:count).inspect #=> "#<Method: String#count(*)>" (1..3).method(:map).inspect #=> "#<Method: Range(Enumerable)#map()>"
In the latter case, the method description includes the “owner” of the original method (Enumerable
module, which is included into Range
).
inspect
also provides, when possible, method argument names (call sequence) and source location.
require 'net/http' Net::HTTP.method(:get).inspect #=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>"
...
in argument definition means argument is optional (has some default value).
For methods defined in C (language core and extensions), location and argument names can’t be extracted, and only generic information is provided in form of *
(any number of arguments) or _
(some positional argument).
"cat".method(:count).inspect #=> "#<Method: String#count(*)>" "cat".method(:+).inspect #=> "#<Method: String#+(_)>""
static VALUE
method_name(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return ID2SYM(data->me->called_id);
}
Returns the name of the method.
static VALUE
method_original_name(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return ID2SYM(data->me->def->original_id);
}
Returns the original name of the method.
class C def foo; end alias bar foo end C.instance_method(:bar).original_name # => :foo
static VALUE
method_owner(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return data->me->owner;
}
Returns the class or module that defines the method. See also Method#receiver
.
(1..3).method(:map).owner #=> Enumerable
static VALUE
rb_method_parameters(VALUE method)
{
const rb_iseq_t *iseq = rb_method_iseq(method);
if (!iseq) {
return rb_unnamed_parameters(method_arity(method));
}
return rb_iseq_parameters(iseq, 0);
}
Returns the parameter information of this method.
def foo(bar); end method(:foo).parameters #=> [[:req, :bar]] def foo(bar, baz, bat, &blk); end method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]] def foo(bar, *args); end method(:foo).parameters #=> [[:req, :bar], [:rest, :args]] def foo(bar, baz, *args, &blk); end method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]]
static VALUE
method_receiver(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return data->recv;
}
Returns the bound receiver of the method object.
(1..3).method(:map).receiver # => 1..3
VALUE
rb_method_location(VALUE method)
{
return method_def_location(rb_method_def(method));
}
Returns the Ruby source filename and line number containing this method or nil if this method was not defined in Ruby (i.e. native).
static VALUE
method_super_method(VALUE method)
{
const struct METHOD *data;
VALUE super_class, iclass;
ID mid;
const rb_method_entry_t *me;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
iclass = data->iclass;
if (!iclass) return Qnil;
if (data->me->def->type == VM_METHOD_TYPE_ALIAS && data->me->defined_class) {
super_class = RCLASS_SUPER(rb_find_defined_class_by_owner(data->me->defined_class,
data->me->def->body.alias.original_me->owner));
mid = data->me->def->body.alias.original_me->def->original_id;
}
else {
super_class = RCLASS_SUPER(RCLASS_ORIGIN(iclass));
mid = data->me->def->original_id;
}
if (!super_class) return Qnil;
me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(super_class, mid, &iclass);
if (!me) return Qnil;
return mnew_internal(me, me->owner, iclass, data->recv, mid, rb_obj_class(method), FALSE, FALSE);
}
Returns a Method
of superclass which would be called when super is used or nil if there is no method on superclass.
static VALUE
method_to_proc(VALUE method)
{
VALUE procval;
rb_proc_t *proc;
/*
* class Method
* def to_proc
* lambda{|*args|
* self.call(*args)
* }
* end
* end
*/
procval = rb_iterate(mlambda, 0, bmcall, method);
GetProcPtr(procval, proc);
proc->is_from_method = 1;
return procval;
}
Returns a Proc
object corresponding to this method.
static VALUE
method_unbind(VALUE obj)
{
VALUE method;
struct METHOD *orig, *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig);
method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD,
&method_data_type, data);
RB_OBJ_WRITE(method, &data->recv, Qundef);
RB_OBJ_WRITE(method, &data->klass, orig->klass);
RB_OBJ_WRITE(method, &data->iclass, orig->iclass);
RB_OBJ_WRITE(method, &data->me, rb_method_entry_clone(orig->me));
return method;
}
Dissociates meth from its current receiver. The resulting UnboundMethod
can subsequently be bound to a new object of the same class (see UnboundMethod
).