Returns whether or not macro
is defined either in the common header files or within any headers
you provide.
Any options you pass to opt
are passed along to the compiler.
Returns the size of the given type
. You may optionally specify additional headers
to search in for the type
.
If found, a macro is passed as a preprocessor constant to the compiler using the type name, in uppercase, prepended with SIZEOF_
, followed by the type name, followed by =X
where “X” is the actual size.
For example, if check_sizeof('mystruct')
returned 12, then the SIZEOF_MYSTRUCT=12
preprocessor macro would be passed to the compiler.
Returns the signedness of the given type
. You may optionally specify additional headers
to search in for the type
.
If the type
is found and is a numeric type, a macro is passed as a preprocessor constant to the compiler using the type
name, in uppercase, prepended with SIGNEDNESS_OF_
, followed by the type
name, followed by =X
where “X” is positive integer if the type
is unsigned and a negative integer if the type
is signed.
For example, if size_t
is defined as unsigned, then check_signedness('size_t')
would return +1 and the SIGNEDNESS_OF_SIZE_T=+1
preprocessor macro would be passed to the compiler. The SIGNEDNESS_OF_INT=-1
macro would be set for check_signedness('int')
Generates a header file consisting of the various macro definitions generated by other methods such as have_func
and have_header. These are then wrapped in a custom #ifndef
based on the header
file name, which defaults to “extconf.h”.
For example:
# extconf.rb require 'mkmf' have_func('realpath') have_header('sys/utime.h') create_header create_makefile('foo')
The above script would generate the following extconf.h file:
#ifndef EXTCONF_H #define EXTCONF_H #define HAVE_REALPATH 1 #define HAVE_SYS_UTIME_H 1 #endif
Given that the create_header
method generates a file based on definitions set earlier in your extconf.rb file, you will probably want to make this one of the last methods you call in your script.
creates a stub Makefile.
Returns a Hash
of the defined schemes.
Try to activate a gem containing path
. Returns true if activation succeeded or wasn’t needed because it was already activated. Returns false if it can’t find the path in a gem.
Find
the full path to the executable for gem name
. If the exec_name
is not given, an exception will be raised, otherwise the specified executable’s path is returned. requirements
allows you to specify specific gem versions.
Reset the dir
and path
values. The next time dir
or path
is requested, the values will be calculated from scratch. This is mainly used by the unit tests to provide test isolation.
The version of the Marshal
format for your Ruby.
Glob pattern for require-able path suffixes.
Use the home
and paths
values for Gem.dir
and Gem.path
. Used mainly by the unit tests to provide environment isolation.
Is this a windows platform?
Is this a java platform?
The path to standard location of the user’s cache directory.
The path to standard location of the user’s data directory.
Default gem load path
Default options for gem commands for Ruby implementers.
The options here should be structured as an array of string “gem” command names as keys and a string of the default options as values.
Example:
def self.platform_defaults
{ 'install' => '--no-rdoc --no-ri --env-shebang', 'update' => '--no-rdoc --no-ri --env-shebang' }
end
The iterator version of the tsort
method. obj.tsort_each
is similar to obj.tsort.each
, but modification of obj during the iteration may lead to unexpected results.
tsort_each
returns nil
. If there is a cycle, TSort::Cyclic
is raised.
class G include TSort def initialize(g) @g = g end def tsort_each_child(n, &b) @g[n].each(&b) end def tsort_each_node(&b) @g.each_key(&b) end end graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) graph.tsort_each {|n| p n } #=> 4 # 2 # 3 # 1
The iterator version of the TSort.tsort
method.
The graph is represented by each_node and each_child. each_node should have call
method which yields for each node in the graph. each_child should have call
method which takes a node argument and yields for each child node.
g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} each_node = lambda {|&b| g.each_key(&b) } each_child = lambda {|n, &b| g[n].each(&b) } TSort.tsort_each(each_node, each_child) {|n| p n } #=> 4 # 2 # 3 # 1
Returns the status of the last executed child process in the current thread.
Process.wait Process.spawn("ruby", "-e", "exit 13") Process.last_status #=> #<Process::Status: pid 4825 exit 13>
If no child process has ever been executed in the current thread, this returns nil
.
Process.last_status #=> nil