Returns the values for this struct as an Array
.
Customer = Struct.new(:name, :address, :zip) joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) joe.to_a[1] #=> "123 Maple, Anytown NC"
Returns strongly connected components as an array of arrays of nodes. The array is sorted from children to parents. Each elements of the array represents a strongly connected component.
class G include TSort def initialize(g) @g = g end def tsort_each_child(n, &b) @g[n].each(&b) end def tsort_each_node(&b) @g.each_key(&b) end end graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) p graph.strongly_connected_components #=> [[4], [2], [3], [1]] graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) p graph.strongly_connected_components #=> [[4], [2, 3], [1]]
Returns strongly connected components as an array of arrays of nodes. The array is sorted from children to parents. Each elements of the array represents a strongly connected component.
The graph is represented by each_node and each_child. each_node should have call
method which yields for each node in the graph. each_child should have call
method which takes a node argument and yields for each child node.
g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} each_node = lambda {|&b| g.each_key(&b) } each_child = lambda {|n, &b| g[n].each(&b) } p TSort.strongly_connected_components(each_node, each_child) #=> [[4], [2], [3], [1]] g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} each_node = lambda {|&b| g.each_key(&b) } each_child = lambda {|n, &b| g[n].each(&b) } p TSort.strongly_connected_components(each_node, each_child) #=> [[4], [2, 3], [1]]
The iterator version of the strongly_connected_components
method. obj.each_strongly_connected_component
is similar to obj.strongly_connected_components.each
, but modification of obj during the iteration may lead to unexpected results.
each_strongly_connected_component
returns nil
.
class G include TSort def initialize(g) @g = g end def tsort_each_child(n, &b) @g[n].each(&b) end def tsort_each_node(&b) @g.each_key(&b) end end graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) graph.each_strongly_connected_component {|scc| p scc } #=> [4] # [2] # [3] # [1] graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) graph.each_strongly_connected_component {|scc| p scc } #=> [4] # [2, 3] # [1]
The iterator version of the TSort.strongly_connected_components
method.
The graph is represented by each_node and each_child. each_node should have call
method which yields for each node in the graph. each_child should have call
method which takes a node argument and yields for each child node.
g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} each_node = lambda {|&b| g.each_key(&b) } each_child = lambda {|n, &b| g[n].each(&b) } TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc } #=> [4] # [2] # [3] # [1] g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} each_node = lambda {|&b| g.each_key(&b) } each_child = lambda {|n, &b| g[n].each(&b) } TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc } #=> [4] # [2, 3] # [1]
Returns an File
instance opened console.
If sym
is given, it will be sent to the opened console with args
and the result will be returned instead of the console IO
itself.
You must require ‘io/console’ to use this method.
Returns system configuration variable using confstr().
name should be a constant under Etc
which begins with CS_
.
The return value is a string or nil. nil means no configuration-defined value. (confstr() returns 0 but errno is not set.)
Etc.confstr(Etc::CS_PATH) #=> "/bin:/usr/bin" # GNU/Linux Etc.confstr(Etc::CS_GNU_LIBC_VERSION) #=> "glibc 2.18" Etc.confstr(Etc::CS_GNU_LIBPTHREAD_VERSION) #=> "NPTL 2.18"
The standard configuration object for gems.
Use the given configuration object (which implements the ConfigFile
protocol) as the standard configuration object.
Iterates over strongly connected component in the subgraph reachable from node.
Return value is unspecified.
each_strongly_connected_component_from
doesn’t call tsort_each_node
.
class G include TSort def initialize(g) @g = g end def tsort_each_child(n, &b) @g[n].each(&b) end def tsort_each_node(&b) @g.each_key(&b) end end graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) graph.each_strongly_connected_component_from(2) {|scc| p scc } #=> [4] # [2] graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) graph.each_strongly_connected_component_from(2) {|scc| p scc } #=> [4] # [2, 3]
Iterates over strongly connected components in a graph. The graph is represented by node and each_child.
node is the first node. each_child should have call
method which takes a node argument and yields for each child node.
Return value is unspecified.
TSort.each_strongly_connected_component_from is a class method and it doesn’t need a class to represent a graph which includes TSort
.
graph = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} each_child = lambda {|n, &b| graph[n].each(&b) } TSort.each_strongly_connected_component_from(1, each_child) {|scc| p scc } #=> [4] # [2, 3] # [1]
Set
the default id conversion object.
This is expected to be an instance such as DRb::DRbIdConv
that responds to to_id
and to_obj
that can convert objects to and from DRb
references.
See DRbServer#default_id_conv.
Set
the default id conversion object.
This is expected to be an instance such as DRb::DRbIdConv
that responds to to_id
and to_obj
that can convert objects to and from DRb
references.
See DRbServer#default_id_conv.
Returns the fractional part of the second.
DateTime.new(2001,2,3,4,5,6.5).sec_fraction #=> (1/2)
Requests a connection to be made on the given remote_sockaddr
after O_NONBLOCK is set for the underlying file descriptor. Returns 0 if successful, otherwise an exception is raised.
# +remote_sockaddr+ - the +struct+ sockaddr contained in a string or Addrinfo object
# Pull down Google's web page require 'socket' include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(80, 'www.google.com') begin # emulate blocking connect socket.connect_nonblock(sockaddr) rescue IO::WaitWritable IO.select(nil, [socket]) # wait 3-way handshake completion begin socket.connect_nonblock(sockaddr) # check connection failure rescue Errno::EISCONN end end socket.write("GET / HTTP/1.0\r\n\r\n") results = socket.read
Refer to Socket#connect
for the exceptions that may be thrown if the call to connect_nonblock fails.
Socket#connect_nonblock
may raise any error corresponding to connect(2) failure, including Errno::EINPROGRESS.
If the exception is Errno::EINPROGRESS, it is extended by IO::WaitWritable
. So IO::WaitWritable
can be used to rescue the exceptions for retrying connect_nonblock.
By specifying a keyword argument exception to false
, you can indicate that connect_nonblock
should not raise an IO::WaitWritable
exception, but return the symbol :wait_writable
instead.
# Socket#connect