Net::HTTP
exception class. You cannot use Net::HTTPExceptions
directly; instead, you must use its subclasses.
Keyword completion module. This allows partial arguments to be specified and resolved against a list of acceptable values.
A complex number can be represented as a paired real number with imaginary unit; a+bi. Where a is real part, b is imaginary part and i is imaginary unit. Real a equals complex a+0i mathematically.
Complex
object can be created as literal, and also by using Kernel#Complex
, Complex::rect
, Complex::polar
or to_c
method.
2+1i #=> (2+1i) Complex(1) #=> (1+0i) Complex(2, 3) #=> (2+3i) Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i) 3.to_c #=> (3+0i)
You can also create complex object from floating-point numbers or strings.
Complex(0.3) #=> (0.3+0i) Complex('0.3-0.5i') #=> (0.3-0.5i) Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i) Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i) 0.3.to_c #=> (0.3+0i) '0.3-0.5i'.to_c #=> (0.3-0.5i) '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i) '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i)
A complex object is either an exact or an inexact number.
Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i) Complex(1, 1) / 2.0 #=> (0.5+0.5i)
A String
object holds and manipulates an arbitrary sequence of bytes, typically representing characters. String
objects may be created using String::new
or as literals.
Because of aliasing issues, users of strings should be aware of the methods that modify the contents of a String
object. Typically, methods with names ending in “!” modify their receiver, while those without a “!” return a new String
. However, there are exceptions, such as String#[]=
.
An Encoding
instance represents a character encoding usable in Ruby. It is defined as a constant under the Encoding
namespace. It has a name and optionally, aliases:
Encoding::ISO_8859_1.name #=> "ISO-8859-1" Encoding::ISO_8859_1.names #=> ["ISO-8859-1", "ISO8859-1"]
Ruby methods dealing with encodings return or accept Encoding
instances as arguments (when a method accepts an Encoding
instance as an argument, it can be passed an Encoding
name or alias instead).
"some string".encoding #=> #<Encoding:UTF-8> string = "some string".encode(Encoding::ISO_8859_1) #=> "some string" string.encoding #=> #<Encoding:ISO-8859-1> "some string".encode "ISO-8859-1" #=> "some string"
Encoding::ASCII_8BIT is a special encoding that is usually used for a byte string, not a character string. But as the name insists, its characters in the range of ASCII are considered as ASCII characters. This is useful when you use ASCII-8BIT characters with other ASCII compatible characters.
The associated Encoding
of a String
can be changed in two different ways.
First, it is possible to set the Encoding
of a string to a new Encoding
without changing the internal byte representation of the string, with String#force_encoding
. This is how you can tell Ruby the correct encoding of a string.
string #=> "R\xC3\xA9sum\xC3\xA9" string.encoding #=> #<Encoding:ISO-8859-1> string.force_encoding(Encoding::UTF_8) #=> "R\u00E9sum\u00E9"
Second, it is possible to transcode a string, i.e. translate its internal byte representation to another encoding. Its associated encoding is also set to the other encoding. See String#encode
for the various forms of transcoding, and the Encoding::Converter
class for additional control over the transcoding process.
string #=> "R\u00E9sum\u00E9" string.encoding #=> #<Encoding:UTF-8> string = string.encode!(Encoding::ISO_8859_1) #=> "R\xE9sum\xE9" string.encoding #=> #<Encoding::ISO-8859-1>
All Ruby script code has an associated Encoding
which any String
literal created in the source code will be associated to.
The default script encoding is Encoding::UTF_8 after v2.0, but it can be changed by a magic comment on the first line of the source code file (or second line, if there is a shebang line on the first). The comment must contain the word coding
or encoding
, followed by a colon, space and the Encoding
name or alias:
# encoding: UTF-8 "some string".encoding #=> #<Encoding:UTF-8>
The __ENCODING__
keyword returns the script encoding of the file which the keyword is written:
# encoding: ISO-8859-1 __ENCODING__ #=> #<Encoding:ISO-8859-1>
ruby -K
will change the default locale encoding, but this is not recommended. Ruby source files should declare its script encoding by a magic comment even when they only depend on US-ASCII strings or regular expressions.
The default encoding of the environment. Usually derived from locale.
see Encoding.locale_charmap
, Encoding.find
(‘locale’)
The default encoding of strings from the filesystem of the environment. This is used for strings of file names or paths.
see Encoding.find
(‘filesystem’)
Each IO
object has an external encoding which indicates the encoding that Ruby will use to read its data. By default Ruby sets the external encoding of an IO
object to the default external encoding. The default external encoding is set by locale encoding or the interpreter -E
option. Encoding.default_external
returns the current value of the external encoding.
ENV["LANG"] #=> "UTF-8" Encoding.default_external #=> #<Encoding:UTF-8> $ ruby -E ISO-8859-1 -e "p Encoding.default_external" #<Encoding:ISO-8859-1> $ LANG=C ruby -e 'p Encoding.default_external' #<Encoding:US-ASCII>
The default external encoding may also be set through Encoding.default_external=
, but you should not do this as strings created before and after the change will have inconsistent encodings. Instead use ruby -E
to invoke ruby with the correct external encoding.
When you know that the actual encoding of the data of an IO
object is not the default external encoding, you can reset its external encoding with IO#set_encoding
or set it at IO
object creation (see IO.new
options).
To process the data of an IO
object which has an encoding different from its external encoding, you can set its internal encoding. Ruby will use this internal encoding to transcode the data when it is read from the IO
object.
Conversely, when data is written to the IO
object it is transcoded from the internal encoding to the external encoding of the IO
object.
The internal encoding of an IO
object can be set with IO#set_encoding
or at IO
object creation (see IO.new
options).
The internal encoding is optional and when not set, the Ruby default internal encoding is used. If not explicitly set this default internal encoding is nil
meaning that by default, no transcoding occurs.
The default internal encoding can be set with the interpreter option -E
. Encoding.default_internal
returns the current internal encoding.
$ ruby -e 'p Encoding.default_internal' nil $ ruby -E ISO-8859-1:UTF-8 -e "p [Encoding.default_external, \ Encoding.default_internal]" [#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>]
The default internal encoding may also be set through Encoding.default_internal=
, but you should not do this as strings created before and after the change will have inconsistent encodings. Instead use ruby -E
to invoke ruby with the correct internal encoding.
IO
encoding example In the following example a UTF-8 encoded string “Ru00E9sumu00E9” is transcoded for output to ISO-8859-1 encoding, then read back in and transcoded to UTF-8:
string = "R\u00E9sum\u00E9" open("transcoded.txt", "w:ISO-8859-1") do |io| io.write(string) end puts "raw text:" p File.binread("transcoded.txt") puts open("transcoded.txt", "r:ISO-8859-1:UTF-8") do |io| puts "transcoded text:" p io.read end
While writing the file, the internal encoding is not specified as it is only necessary for reading. While reading the file both the internal and external encoding must be specified to obtain the correct result.
$ ruby t.rb raw text: "R\xE9sum\xE9" transcoded text: "R\u00E9sum\u00E9"
Class Exception
and its subclasses are used to communicate between Kernel#raise
and rescue
statements in begin ... end
blocks.
An Exception
object carries information about an exception:
Its type (the exception’s class).
An optional descriptive message.
Optional backtrace information.
Some built-in subclasses of Exception
have additional methods: e.g., NameError#name
.
Two Ruby statements have default exception classes:
raise
: defaults to RuntimeError
.
rescue
: defaults to StandardError
.
When an exception has been raised but not yet handled (in rescue
, ensure
, at_exit
and END
blocks), two global variables are set:
$!
contains the current exception.
$@
contains its backtrace.
To provide additional or alternate information, a program may create custom exception classes that derive from the built-in exception classes.
A good practice is for a library to create a single “generic” exception class (typically a subclass of StandardError
or RuntimeError
) and have its other exception classes derive from that class. This allows the user to rescue the generic exception, thus catching all exceptions the library may raise even if future versions of the library add new exception subclasses.
For example:
class MyLibrary class Error < ::StandardError end class WidgetError < Error end class FrobError < Error end end
To handle both MyLibrary::WidgetError and MyLibrary::FrobError the library user can rescue MyLibrary::Error.
Exception
Classes The built-in subclasses of Exception
are:
fatal
Raised when a signal is received.
begin Process.kill('HUP',Process.pid) sleep # wait for receiver to handle signal sent by Process.kill rescue SignalException => e puts "received Exception #{e}" end
produces:
received Exception SIGHUP
The most standard error types are subclasses of StandardError
. A rescue clause without an explicit Exception
class will rescue all StandardErrors (and only those).
def foo raise "Oups" end foo rescue "Hello" #=> "Hello"
On the other hand:
require 'does/not/exist' rescue "Hi"
raises the exception:
LoadError: no such file to load -- does/not/exist
EncodingError
is the base class for encoding errors.
A rational number can be represented as a pair of integer numbers: a/b (b>0), where a is the numerator and b is the denominator. Integer
a equals rational a/1 mathematically.
In Ruby, you can create rational objects with the Kernel#Rational
, to_r
, or rationalize methods or by suffixing r
to a literal. The return values will be irreducible fractions.
Rational(1) #=> (1/1) Rational(2, 3) #=> (2/3) Rational(4, -6) #=> (-2/3) 3.to_r #=> (3/1) 2/3r #=> (2/3)
You can also create rational objects from floating-point numbers or strings.
Rational(0.3) #=> (5404319552844595/18014398509481984) Rational('0.3') #=> (3/10) Rational('2/3') #=> (2/3) 0.3.to_r #=> (5404319552844595/18014398509481984) '0.3'.to_r #=> (3/10) '2/3'.to_r #=> (2/3) 0.3.rationalize #=> (3/10)
A rational object is an exact number, which helps you to write programs without any rounding errors.
10.times.inject(0) {|t| t + 0.1 } #=> 0.9999999999999999 10.times.inject(0) {|t| t + Rational('0.1') } #=> (1/1)
However, when an expression includes an inexact component (numerical value or operation), it will produce an inexact result.
Rational(10) / 3 #=> (10/3) Rational(10) / 3.0 #=> 3.3333333333333335 Rational(-8) ** Rational(1, 3) #=> (1.0000000000000002+1.7320508075688772i)
A Struct
is a convenient way to bundle a number of attributes together, using accessor methods, without having to write an explicit class.
The Struct
class generates new subclasses that hold a set of members and their values. For each member a reader and writer method is created similar to Module#attr_accessor
.
Customer = Struct.new(:name, :address) do def greeting "Hello #{name}!" end end dave = Customer.new("Dave", "123 Main") dave.name #=> "Dave" dave.greeting #=> "Hello Dave!"
See Struct::new
for further examples of creating struct subclasses and instances.
In the method descriptions that follow, a “member” parameter refers to a struct member which is either a quoted string ("name"
) or a Symbol
(:name
).
Pseudo I/O on String
object, with interface corresponding to IO
.
Commonly used to simulate $stdio
or $stderr
require 'stringio' # Writing stream emulation io = StringIO.new io.puts "Hello World" io.string #=> "Hello World\n" # Reading stream emulation io = StringIO.new "first\nsecond\nlast\n" io.getc #=> "f" io.gets #=> "irst\n" io.read #=> "second\nlast\n"
StringScanner
provides for lexical scanning operations on a String
. Here is an example of its usage:
s = StringScanner.new('This is an example string') s.eos? # -> false p s.scan(/\w+/) # -> "This" p s.scan(/\w+/) # -> nil p s.scan(/\s+/) # -> " " p s.scan(/\s+/) # -> nil p s.scan(/\w+/) # -> "is" s.eos? # -> false p s.scan(/\s+/) # -> " " p s.scan(/\w+/) # -> "an" p s.scan(/\s+/) # -> " " p s.scan(/\w+/) # -> "example" p s.scan(/\s+/) # -> " " p s.scan(/\w+/) # -> "string" s.eos? # -> true p s.scan(/\s+/) # -> nil p s.scan(/\w+/) # -> nil
Scanning a string means remembering the position of a scan pointer, which is just an index. The point of scanning is to move forward a bit at a time, so matches are sought after the scan pointer; usually immediately after it.
Given the string “test string”, here are the pertinent scan pointer positions:
t e s t s t r i n g 0 1 2 ... 1 0
When you scan
for a pattern (a regular expression), the match must occur at the character after the scan pointer. If you use scan_until
, then the match can occur anywhere after the scan pointer. In both cases, the scan pointer moves just beyond the last character of the match, ready to scan again from the next character onwards. This is demonstrated by the example above.
Method
Categories There are other methods besides the plain scanners. You can look ahead in the string without actually scanning. You can access the most recent match. You can modify the string being scanned, reset or terminate the scanner, find out or change the position of the scan pointer, skip ahead, and so on.
beginning_of_line?
(#bol?
)
There are aliases to several of the methods.
BasicObject
is the parent class of all classes in Ruby. It’s an explicit blank class.
BasicObject
can be used for creating object hierarchies independent of Ruby’s object hierarchy, proxy objects like the Delegator
class, or other uses where namespace pollution from Ruby’s methods and classes must be avoided.
To avoid polluting BasicObject
for other users an appropriately named subclass of BasicObject
should be created instead of directly modifying BasicObject:
class MyObjectSystem < BasicObject end
BasicObject
does not include Kernel
(for methods like puts
) and BasicObject
is outside of the namespace of the standard library so common classes will not be found without using a full class path.
A variety of strategies can be used to provide useful portions of the standard library to subclasses of BasicObject
. A subclass could include Kernel
to obtain puts
, exit
, etc. A custom Kernel-like module could be created and included or delegation can be used via method_missing
:
class MyObjectSystem < BasicObject DELEGATE = [:puts, :p] def method_missing(name, *args, &block) return super unless DELEGATE.include? name ::Kernel.send(name, *args, &block) end def respond_to_missing?(name, include_private = false) DELEGATE.include?(name) or super end end
Access to classes and modules from the Ruby standard library can be obtained in a BasicObject
subclass by referencing the desired constant from the root like ::File
or ::Enumerator
. Like method_missing
, const_missing can be used to delegate constant lookup to Object
:
class MyObjectSystem < BasicObject def self.const_missing(name) ::Object.const_get(name) end end
The GetoptLong
class allows you to parse command line options similarly to the GNU getopt_long() C library call. Note, however, that GetoptLong
is a pure Ruby implementation.
GetoptLong
allows for POSIX-style options like --file
as well as single letter options like -f
The empty option --
(two minus symbols) is used to end option processing. This can be particularly important if options have optional arguments.
Here is a simple example of usage:
require 'getoptlong' opts = GetoptLong.new( [ '--help', '-h', GetoptLong::NO_ARGUMENT ], [ '--repeat', '-n', GetoptLong::REQUIRED_ARGUMENT ], [ '--name', GetoptLong::OPTIONAL_ARGUMENT ] ) dir = nil name = nil repetitions = 1 opts.each do |opt, arg| case opt when '--help' puts <<-EOF hello [OPTION] ... DIR -h, --help: show help --repeat x, -n x: repeat x times --name [name]: greet user by name, if name not supplied default is John DIR: The directory in which to issue the greeting. EOF when '--repeat' repetitions = arg.to_i when '--name' if arg == '' name = 'John' else name = arg end end end if ARGV.length != 1 puts "Missing dir argument (try --help)" exit 0 end dir = ARGV.shift Dir.chdir(dir) for i in (1..repetitions) print "Hello" if name print ", #{name}" end puts end
Example command line:
hello -n 6 --name -- /tmp
OptionParser
OptionParser
is a class for command-line option analysis. It is much more advanced, yet also easier to use, than GetoptLong
, and is a more Ruby-oriented solution.
The argument specification and the code to handle it are written in the same place.
It can output an option summary; you don’t need to maintain this string separately.
Optional and mandatory arguments are specified very gracefully.
Arguments can be automatically converted to a specified class.
Arguments can be restricted to a certain set.
All of these features are demonstrated in the examples below. See make_switch
for full documentation.
require 'optparse' options = {} OptionParser.new do |parser| parser.banner = "Usage: example.rb [options]" parser.on("-v", "--[no-]verbose", "Run verbosely") do |v| options[:verbose] = v end end.parse! p options p ARGV
OptionParser
can be used to automatically generate help for the commands you write:
require 'optparse' Options = Struct.new(:name) class Parser def self.parse(options) args = Options.new("world") opt_parser = OptionParser.new do |parser| parser.banner = "Usage: example.rb [options]" parser.on("-nNAME", "--name=NAME", "Name to say hello to") do |n| args.name = n end parser.on("-h", "--help", "Prints this help") do puts parser exit end end opt_parser.parse!(options) return args end end options = Parser.parse %w[--help] #=> # Usage: example.rb [options] # -n, --name=NAME Name to say hello to # -h, --help Prints this help
For options that require an argument, option specification strings may include an option name in all caps. If an option is used without the required argument, an exception will be raised.
require 'optparse' options = {} OptionParser.new do |parser| parser.on("-r", "--require LIBRARY", "Require the LIBRARY before executing your script") do |lib| puts "You required #{lib}!" end end.parse!
Used:
$ ruby optparse-test.rb -r optparse-test.rb:9:in `<main>': missing argument: -r (OptionParser::MissingArgument) $ ruby optparse-test.rb -r my-library You required my-library!
OptionParser
supports the ability to coerce command line arguments into objects for us.
OptionParser
comes with a few ready-to-use kinds of type coercion. They are:
Date
– Anything accepted by Date.parse
DateTime
– Anything accepted by DateTime.parse
Time
– Anything accepted by Time.httpdate
or Time.parse
URI
– Anything accepted by URI.parse
Shellwords
– Anything accepted by Shellwords.shellwords
String
– Any non-empty string
Integer
– Any integer. Will convert octal. (e.g. 124, -3, 040)
Float
– Any float. (e.g. 10, 3.14, -100E+13)
Numeric
– Any integer, float, or rational (1, 3.4, 1/3)
DecimalInteger
– Like Integer
, but no octal format.
OctalInteger
– Like Integer
, but no decimal format.
DecimalNumeric
– Decimal integer or float.
TrueClass
– Accepts ‘+, yes, true, -, no, false’ and defaults as true
FalseClass
– Same as TrueClass
, but defaults to false
Array
– Strings separated by ‘,’ (e.g. 1,2,3)
Regexp
– Regular expressions. Also includes options.
We can also add our own coercions, which we will cover below.
As an example, the built-in Time
conversion is used. The other built-in conversions behave in the same way. OptionParser
will attempt to parse the argument as a Time
. If it succeeds, that time will be passed to the handler block. Otherwise, an exception will be raised.
require 'optparse' require 'optparse/time' OptionParser.new do |parser| parser.on("-t", "--time [TIME]", Time, "Begin execution at given time") do |time| p time end end.parse!
Used:
$ ruby optparse-test.rb -t nonsense ... invalid argument: -t nonsense (OptionParser::InvalidArgument) $ ruby optparse-test.rb -t 10-11-12 2010-11-12 00:00:00 -0500 $ ruby optparse-test.rb -t 9:30 2014-08-13 09:30:00 -0400
The accept
method on OptionParser
may be used to create converters. It specifies which conversion block to call whenever a class is specified. The example below uses it to fetch a User
object before the on
handler receives it.
require 'optparse' User = Struct.new(:id, :name) def find_user id not_found = ->{ raise "No User Found for id #{id}" } [ User.new(1, "Sam"), User.new(2, "Gandalf") ].find(not_found) do |u| u.id == id end end op = OptionParser.new op.accept(User) do |user_id| find_user user_id.to_i end op.on("--user ID", User) do |user| puts user end op.parse!
Used:
$ ruby optparse-test.rb --user 1 #<struct User id=1, name="Sam"> $ ruby optparse-test.rb --user 2 #<struct User id=2, name="Gandalf"> $ ruby optparse-test.rb --user 3 optparse-test.rb:15:in `block in find_user': No User Found for id 3 (RuntimeError)
Hash
The into
option of order
, parse
and so on methods stores command line options into a Hash
.
require 'optparse' params = {} OptionParser.new do |parser| parser.on('-a') parser.on('-b NUM', Integer) parser.on('-v', '--verbose') end.parse!(into: params) p params
Used:
$ ruby optparse-test.rb -a {:a=>true} $ ruby optparse-test.rb -a -v {:a=>true, :verbose=>true} $ ruby optparse-test.rb -a -b 100 {:a=>true, :b=>100}
The following example is a complete Ruby program. You can run it and see the effect of specifying various options. This is probably the best way to learn the features of optparse
.
require 'optparse' require 'optparse/time' require 'ostruct' require 'pp' class OptparseExample Version = '1.0.0' CODES = %w[iso-2022-jp shift_jis euc-jp utf8 binary] CODE_ALIASES = { "jis" => "iso-2022-jp", "sjis" => "shift_jis" } class ScriptOptions attr_accessor :library, :inplace, :encoding, :transfer_type, :verbose, :extension, :delay, :time, :record_separator, :list def initialize self.library = [] self.inplace = false self.encoding = "utf8" self.transfer_type = :auto self.verbose = false end def define_options(parser) parser.banner = "Usage: example.rb [options]" parser.separator "" parser.separator "Specific options:" # add additional options perform_inplace_option(parser) delay_execution_option(parser) execute_at_time_option(parser) specify_record_separator_option(parser) list_example_option(parser) specify_encoding_option(parser) optional_option_argument_with_keyword_completion_option(parser) boolean_verbose_option(parser) parser.separator "" parser.separator "Common options:" # No argument, shows at tail. This will print an options summary. # Try it and see! parser.on_tail("-h", "--help", "Show this message") do puts parser exit end # Another typical switch to print the version. parser.on_tail("--version", "Show version") do puts Version exit end end def perform_inplace_option(parser) # Specifies an optional option argument parser.on("-i", "--inplace [EXTENSION]", "Edit ARGV files in place", "(make backup if EXTENSION supplied)") do |ext| self.inplace = true self.extension = ext || '' self.extension.sub!(/\A\.?(?=.)/, ".") # Ensure extension begins with dot. end end def delay_execution_option(parser) # Cast 'delay' argument to a Float. parser.on("--delay N", Float, "Delay N seconds before executing") do |n| self.delay = n end end def execute_at_time_option(parser) # Cast 'time' argument to a Time object. parser.on("-t", "--time [TIME]", Time, "Begin execution at given time") do |time| self.time = time end end def specify_record_separator_option(parser) # Cast to octal integer. parser.on("-F", "--irs [OCTAL]", OptionParser::OctalInteger, "Specify record separator (default \\0)") do |rs| self.record_separator = rs end end def list_example_option(parser) # List of arguments. parser.on("--list x,y,z", Array, "Example 'list' of arguments") do |list| self.list = list end end def specify_encoding_option(parser) # Keyword completion. We are specifying a specific set of arguments (CODES # and CODE_ALIASES - notice the latter is a Hash), and the user may provide # the shortest unambiguous text. code_list = (CODE_ALIASES.keys + CODES).join(', ') parser.on("--code CODE", CODES, CODE_ALIASES, "Select encoding", "(#{code_list})") do |encoding| self.encoding = encoding end end def optional_option_argument_with_keyword_completion_option(parser) # Optional '--type' option argument with keyword completion. parser.on("--type [TYPE]", [:text, :binary, :auto], "Select transfer type (text, binary, auto)") do |t| self.transfer_type = t end end def boolean_verbose_option(parser) # Boolean switch. parser.on("-v", "--[no-]verbose", "Run verbosely") do |v| self.verbose = v end end end # # Return a structure describing the options. # def parse(args) # The options specified on the command line will be collected in # *options*. @options = ScriptOptions.new @args = OptionParser.new do |parser| @options.define_options(parser) parser.parse!(args) end @options end attr_reader :parser, :options end # class OptparseExample example = OptparseExample.new options = example.parse(ARGV) pp options # example.options pp ARGV
Completion
For modern shells (e.g. bash, zsh, etc.), you can use shell completion for command line options.
The above examples should be enough to learn how to use this class. If you have any questions, file a ticket at bugs.ruby-lang.org.
Raised when attempting to divide an integer by 0.
42 / 0 #=> ZeroDivisionError: divided by 0
Note that only division by an exact 0 will raise the exception:
42 / 0.0 #=> Float::INFINITY 42 / -0.0 #=> -Float::INFINITY 0 / 0.0 #=> NaN
The Comparable
mixin is used by classes whose objects may be ordered. The class must define the <=>
operator, which compares the receiver against another object, returning a value less than 0, returning 0, or returning a value greater than 0, depending on whether the receiver is less than, equal to, or greater than the other object. If the other object is not comparable then the <=>
operator should return nil
. Comparable
uses <=>
to implement the conventional comparison operators (<
, <=
, ==
, >=
, and >
) and the method between?
.
class SizeMatters include Comparable attr :str def <=>(other) str.size <=> other.str.size end def initialize(str) @str = str end def inspect @str end end s1 = SizeMatters.new("Z") s2 = SizeMatters.new("YY") s3 = SizeMatters.new("XXX") s4 = SizeMatters.new("WWWW") s5 = SizeMatters.new("VVVVV") s1 < s2 #=> true s4.between?(s1, s3) #=> false s4.between?(s3, s5) #=> true [ s3, s2, s5, s4, s1 ].sort #=> [Z, YY, XXX, WWWW, VVVVV]
require ‘bigdecimal/jacobian’
Provides methods to compute the Jacobian
matrix of a set of equations at a point x. In the methods below:
f is an Object
which is used to compute the Jacobian
matrix of the equations. It must provide the following methods:
returns the values of all functions at x
returns 0.0
returns 1.0
returns 2.0
returns 10.0
returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.
x is the point at which to compute the Jacobian
.
fx is f.values(x).
newton.rb
Solves the nonlinear algebraic equation system f = 0 by Newton’s method. This program is not dependent on BigDecimal
.
To call:
n = nlsolve(f,x) where n is the number of iterations required, x is the initial value vector f is an Object which is used to compute the values of the equations to be solved.
It must provide the following methods:
returns the values of all functions at x
returns 0.0
returns 1.0
returns 2.0
returns 10.0
returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.
On exit, x is the solution vector.
This module provides a framework for message digest libraries.
You may want to look at OpenSSL::Digest
as it supports more algorithms.
A cryptographic hash function is a procedure that takes data and returns a fixed bit string: the hash value, also known as digest. Hash
functions are also called one-way functions, it is easy to compute a digest from a message, but it is infeasible to generate a message from a digest.
require 'digest' # Compute a complete digest Digest::SHA256.digest 'message' #=> "\xABS\n\x13\xE4Y..." sha256 = Digest::SHA256.new sha256.digest 'message' #=> "\xABS\n\x13\xE4Y..." # Other encoding formats Digest::SHA256.hexdigest 'message' #=> "ab530a13e459..." Digest::SHA256.base64digest 'message' #=> "q1MKE+RZFJgr..." # Compute digest by chunks md5 = Digest::MD5.new md5.update 'message1' md5 << 'message2' # << is an alias for update md5.hexdigest #=> "94af09c09bb9..." # Compute digest for a file sha256 = Digest::SHA256.file 'testfile' sha256.hexdigest
Additionally digests can be encoded in “bubble babble” format as a sequence of consonants and vowels which is more recognizable and comparable than a hexadecimal digest.
require 'digest/bubblebabble' Digest::SHA256.bubblebabble 'message' #=> "xopoh-fedac-fenyh-..."
See the bubble babble specification at web.mit.edu/kenta/www/one/bubblebabble/spec/jrtrjwzi/draft-huima-01.txt.
Digest
algorithms Different digest algorithms (or hash functions) are available:
MD5
See RFC 1321 The MD5
Message-Digest Algorithm
As Digest::RMD160
. See homes.esat.kuleuven.be/~bosselae/ripemd160.html.
SHA1
See FIPS 180 Secure Hash
Standard.
SHA2
family
See FIPS 180 Secure Hash
Standard which defines the following algorithms:
SHA512
SHA384
SHA256
The latest versions of the FIPS publications can be found here: csrc.nist.gov/publications/PubsFIPS.html.
JSON is a lightweight data-interchange format.
A JSON value is one of the following:
Double-quoted text: "foo"
.
Number: 1
, 1.0
, 2.0e2
.
Boolean: true
, false
.
Null: null
.
Array: an ordered list of values, enclosed by square brackets:
["foo", 1, 1.0, 2.0e2, true, false, null]
Object: a collection of name/value pairs, enclosed by curly braces; each name is double-quoted text; the values may be any JSON values:
{"a": "foo", "b": 1, "c": 1.0, "d": 2.0e2, "e": true, "f": false, "g": null}
A JSON array or object may contain nested arrays, objects, and scalars to any depth:
{"foo": {"bar": 1, "baz": 2}, "bat": [0, 1, 2]} [{"foo": 0, "bar": 1}, ["baz", 2]]
To make module JSON available in your code, begin with:
require 'json'
All examples here assume that this has been done.
You can parse a String containing JSON data using either of two methods:
JSON.parse(source, opts)
JSON.parse!(source, opts)
where
source
is a Ruby object.
opts
is a Hash object containing options that control both input allowed and output formatting.
The difference between the two methods is that JSON.parse!
omits some checks and may not be safe for some source
data; use it only for data from trusted sources. Use the safer method JSON.parse
for less trusted sources.
When source
is a JSON array, JSON.parse
by default returns a Ruby Array:
json = '["foo", 1, 1.0, 2.0e2, true, false, null]' ruby = JSON.parse(json) ruby # => ["foo", 1, 1.0, 200.0, true, false, nil] ruby.class # => Array
The JSON array may contain nested arrays, objects, and scalars to any depth:
json = '[{"foo": 0, "bar": 1}, ["baz", 2]]' JSON.parse(json) # => [{"foo"=>0, "bar"=>1}, ["baz", 2]]
When the source is a JSON object, JSON.parse
by default returns a Ruby Hash:
json = '{"a": "foo", "b": 1, "c": 1.0, "d": 2.0e2, "e": true, "f": false, "g": null}' ruby = JSON.parse(json) ruby # => {"a"=>"foo", "b"=>1, "c"=>1.0, "d"=>200.0, "e"=>true, "f"=>false, "g"=>nil} ruby.class # => Hash
The JSON object may contain nested arrays, objects, and scalars to any depth:
json = '{"foo": {"bar": 1, "baz": 2}, "bat": [0, 1, 2]}' JSON.parse(json) # => {"foo"=>{"bar"=>1, "baz"=>2}, "bat"=>[0, 1, 2]}
When the source is a JSON scalar (not an array or object), JSON.parse
returns a Ruby scalar.
String:
ruby = JSON.parse('"foo"') ruby # => 'foo' ruby.class # => String
Integer:
ruby = JSON.parse('1') ruby # => 1 ruby.class # => Integer
Float:
ruby = JSON.parse('1.0') ruby # => 1.0 ruby.class # => Float ruby = JSON.parse('2.0e2') ruby # => 200 ruby.class # => Float
Boolean:
ruby = JSON.parse('true') ruby # => true ruby.class # => TrueClass ruby = JSON.parse('false') ruby # => false ruby.class # => FalseClass
Null:
ruby = JSON.parse('null') ruby # => nil ruby.class # => NilClass
Option max_nesting
(Integer) specifies the maximum nesting depth allowed; defaults to 100
; specify false
to disable depth checking.
With the default, false
:
source = '[0, [1, [2, [3]]]]' ruby = JSON.parse(source) ruby # => [0, [1, [2, [3]]]]
Too deep:
# Raises JSON::NestingError (nesting of 2 is too deep): JSON.parse(source, {max_nesting: 1})
Bad value:
# Raises TypeError (wrong argument type Symbol (expected Fixnum)): JSON.parse(source, {max_nesting: :foo})
Option allow_nan
(boolean) specifies whether to allow NaN
, Infinity
, and MinusInfinity
in source
; defaults to false
.
With the default, false
:
# Raises JSON::ParserError (225: unexpected token at '[NaN]'): JSON.parse('[NaN]') # Raises JSON::ParserError (232: unexpected token at '[Infinity]'): JSON.parse('[Infinity]') # Raises JSON::ParserError (248: unexpected token at '[-Infinity]'): JSON.parse('[-Infinity]')
Allow:
source = '[NaN, Infinity, -Infinity]' ruby = JSON.parse(source, {allow_nan: true}) ruby # => [NaN, Infinity, -Infinity]
Option symbolize_names
(boolean) specifies whether returned Hash keys should be Symbols; defaults to false
(use Strings).
With the default, false
:
source = '{"a": "foo", "b": 1.0, "c": true, "d": false, "e": null}' ruby = JSON.parse(source) ruby # => {"a"=>"foo", "b"=>1.0, "c"=>true, "d"=>false, "e"=>nil}
Use Symbols:
ruby = JSON.parse(source, {symbolize_names: true}) ruby # => {:a=>"foo", :b=>1.0, :c=>true, :d=>false, :e=>nil}
Option object_class
(Class) specifies the Ruby class to be used for each JSON object; defaults to Hash.
With the default, Hash:
source = '{"a": "foo", "b": 1.0, "c": true, "d": false, "e": null}' ruby = JSON.parse(source) ruby.class # => Hash
Use class OpenStruct:
ruby = JSON.parse(source, {object_class: OpenStruct}) ruby # => #<OpenStruct a="foo", b=1.0, c=true, d=false, e=nil>
Option array_class
(Class) specifies the Ruby class to be used for each JSON array; defaults to Array.
With the default, Array:
source = '["foo", 1.0, true, false, null]' ruby = JSON.parse(source) ruby.class # => Array
Use class Set:
ruby = JSON.parse(source, {array_class: Set}) ruby # => #<Set: {"foo", 1.0, true, false, nil}>
Option create_additions
(boolean) specifies whether to use JSON additions in parsing. See JSON Additions.
To generate a Ruby String containing JSON data, use method JSON.generate(source, opts)
, where
source
is a Ruby object.
opts
is a Hash object containing options that control both input allowed and output formatting.
When the source is a Ruby Array, JSON.generate
returns a String containing a JSON array:
ruby = [0, 's', :foo] json = JSON.generate(ruby) json # => '[0,"s","foo"]'
The Ruby Array array may contain nested arrays, hashes, and scalars to any depth:
ruby = [0, [1, 2], {foo: 3, bar: 4}] json = JSON.generate(ruby) json # => '[0,[1,2],{"foo":3,"bar":4}]'
When the source is a Ruby Hash, JSON.generate
returns a String containing a JSON object:
ruby = {foo: 0, bar: 's', baz: :bat} json = JSON.generate(ruby) json # => '{"foo":0,"bar":"s","baz":"bat"}'
The Ruby Hash array may contain nested arrays, hashes, and scalars to any depth:
ruby = {foo: [0, 1], bar: {baz: 2, bat: 3}, bam: :bad} json = JSON.generate(ruby) json # => '{"foo":[0,1],"bar":{"baz":2,"bat":3},"bam":"bad"}'
When the source is neither an Array nor a Hash, the generated JSON data depends on the class of the source.
When the source is a Ruby Integer or Float, JSON.generate
returns a String containing a JSON number:
JSON.generate(42) # => '42' JSON.generate(0.42) # => '0.42'
When the source is a Ruby String, JSON.generate
returns a String containing a JSON string (with double-quotes):
JSON.generate('A string') # => '"A string"'
When the source is true
, false
or nil
, JSON.generate
returns a String containing the corresponding JSON token:
JSON.generate(true) # => 'true' JSON.generate(false) # => 'false' JSON.generate(nil) # => 'null'
When the source is none of the above, JSON.generate
returns a String containing a JSON string representation of the source:
JSON.generate(:foo) # => '"foo"' JSON.generate(Complex(0, 0)) # => '"0+0i"' JSON.generate(Dir.new('.')) # => '"#<Dir>"'
Option allow_nan
(boolean) specifies whether NaN
, Infinity
, and -Infinity
may be generated; defaults to false
.
With the default, false
:
# Raises JSON::GeneratorError (920: NaN not allowed in JSON): JSON.generate(JSON::NaN) # Raises JSON::GeneratorError (917: Infinity not allowed in JSON): JSON.generate(JSON::Infinity) # Raises JSON::GeneratorError (917: -Infinity not allowed in JSON): JSON.generate(JSON::MinusInfinity)
Allow:
ruby = [Float::NaN, Float::Infinity, Float::MinusInfinity] JSON.generate(ruby, allow_nan: true) # => '[NaN,Infinity,-Infinity]'
Option max_nesting
(Integer) specifies the maximum nesting depth in obj
; defaults to 100
.
With the default, 100
:
obj = [[[[[[0]]]]]] JSON.generate(obj) # => '[[[[[[0]]]]]]'
Too deep:
# Raises JSON::NestingError (nesting of 2 is too deep): JSON.generate(obj, max_nesting: 2)
The default formatting options generate the most compact JSON data, all on one line and with no whitespace.
You can use these formatting options to generate JSON data in a more open format, using whitespace. See also JSON.pretty_generate
.
Option array_nl
(String) specifies a string (usually a newline) to be inserted after each JSON array; defaults to the empty String, ''
.
Option object_nl
(String) specifies a string (usually a newline) to be inserted after each JSON object; defaults to the empty String, ''
.
Option indent
(String) specifies the string (usually spaces) to be used for indentation; defaults to the empty String, ''
; defaults to the empty String, ''
; has no effect unless options array_nl
or object_nl
specify newlines.
Option space
(String) specifies a string (usually a space) to be inserted after the colon in each JSON object’s pair; defaults to the empty String, ''
.
Option space_before
(String) specifies a string (usually a space) to be inserted before the colon in each JSON object’s pair; defaults to the empty String, ''
.
In this example, obj
is used first to generate the shortest JSON data (no whitespace), then again with all formatting options specified:
obj = {foo: [:bar, :baz], bat: {bam: 0, bad: 1}} json = JSON.generate(obj) puts 'Compact:', json opts = { array_nl: "\n", object_nl: "\n", indent: ' ', space_before: ' ', space: ' ' } puts 'Open:', JSON.generate(obj, opts)
Output:
Compact: {"foo":["bar","baz"],"bat":{"bam":0,"bad":1}} Open: { "foo" : [ "bar", "baz" ], "bat" : { "bam" : 0, "bad" : 1 } }
When you “round trip” a non-String object from Ruby to JSON and back, you have a new String, instead of the object you began with:
ruby0 = Range.new(0, 2) json = JSON.generate(ruby0) json # => '0..2"' ruby1 = JSON.parse(json) ruby1 # => '0..2' ruby1.class # => String
You can use JSON additions to preserve the original object. The addition is an extension of a ruby class, so that:
JSON.generate stores more information in the JSON string.
JSON.parse, called with option create_additions
, uses that information to create a proper Ruby object.
This example shows a Range being generated into JSON and parsed back into Ruby, both without and with the addition for Range:
ruby = Range.new(0, 2) # This passage does not use the addition for Range. json0 = JSON.generate(ruby) ruby0 = JSON.parse(json0) # This passage uses the addition for Range. require 'json/add/range' json1 = JSON.generate(ruby) ruby1 = JSON.parse(json1, create_additions: true) # Make a nice display. display = <<EOT Generated JSON: Without addition: #{json0} (#{json0.class}) With addition: #{json1} (#{json1.class}) Parsed JSON: Without addition: #{ruby0.inspect} (#{ruby0.class}) With addition: #{ruby1.inspect} (#{ruby1.class}) EOT puts display
This output shows the different results:
Generated JSON: Without addition: "0..2" (String) With addition: {"json_class":"Range","a":[0,2,false]} (String) Parsed JSON: Without addition: "0..2" (String) With addition: 0..2 (Range)
The JSON module includes additions for certain classes. You can also craft custom additions. See Custom JSON Additions.
The JSON module includes additions for certain classes. To use an addition, require
its source:
BigDecimal: require 'json/add/bigdecimal'
Complex: require 'json/add/complex'
Date: require 'json/add/date'
DateTime: require 'json/add/date_time'
Exception: require 'json/add/exception'
OpenStruct: require 'json/add/ostruct'
Range: require 'json/add/range'
Rational: require 'json/add/rational'
Regexp: require 'json/add/regexp'
Set: require 'json/add/set'
Struct: require 'json/add/struct'
Symbol: require 'json/add/symbol'
Time: require 'json/add/time'
To reduce punctuation clutter, the examples below show the generated JSON via puts
, rather than the usual inspect
,
BigDecimal:
require 'json/add/bigdecimal' ruby0 = BigDecimal(0) # 0.0 json = JSON.generate(ruby0) # {"json_class":"BigDecimal","b":"27:0.0"} ruby1 = JSON.parse(json, create_additions: true) # 0.0 ruby1.class # => BigDecimal
Complex:
require 'json/add/complex' ruby0 = Complex(1+0i) # 1+0i json = JSON.generate(ruby0) # {"json_class":"Complex","r":1,"i":0} ruby1 = JSON.parse(json, create_additions: true) # 1+0i ruby1.class # Complex
Date:
require 'json/add/date' ruby0 = Date.today # 2020-05-02 json = JSON.generate(ruby0) # {"json_class":"Date","y":2020,"m":5,"d":2,"sg":2299161.0} ruby1 = JSON.parse(json, create_additions: true) # 2020-05-02 ruby1.class # Date
DateTime:
require 'json/add/date_time' ruby0 = DateTime.now # 2020-05-02T10:38:13-05:00 json = JSON.generate(ruby0) # {"json_class":"DateTime","y":2020,"m":5,"d":2,"H":10,"M":38,"S":13,"of":"-5/24","sg":2299161.0} ruby1 = JSON.parse(json, create_additions: true) # 2020-05-02T10:38:13-05:00 ruby1.class # DateTime
Exception (and its subclasses including RuntimeError):
require 'json/add/exception' ruby0 = Exception.new('A message') # A message json = JSON.generate(ruby0) # {"json_class":"Exception","m":"A message","b":null} ruby1 = JSON.parse(json, create_additions: true) # A message ruby1.class # Exception ruby0 = RuntimeError.new('Another message') # Another message json = JSON.generate(ruby0) # {"json_class":"RuntimeError","m":"Another message","b":null} ruby1 = JSON.parse(json, create_additions: true) # Another message ruby1.class # RuntimeError
OpenStruct:
require 'json/add/ostruct' ruby0 = OpenStruct.new(name: 'Matz', language: 'Ruby') # #<OpenStruct name="Matz", language="Ruby"> json = JSON.generate(ruby0) # {"json_class":"OpenStruct","t":{"name":"Matz","language":"Ruby"}} ruby1 = JSON.parse(json, create_additions: true) # #<OpenStruct name="Matz", language="Ruby"> ruby1.class # OpenStruct
Range:
require 'json/add/range' ruby0 = Range.new(0, 2) # 0..2 json = JSON.generate(ruby0) # {"json_class":"Range","a":[0,2,false]} ruby1 = JSON.parse(json, create_additions: true) # 0..2 ruby1.class # Range
Rational:
require 'json/add/rational' ruby0 = Rational(1, 3) # 1/3 json = JSON.generate(ruby0) # {"json_class":"Rational","n":1,"d":3} ruby1 = JSON.parse(json, create_additions: true) # 1/3 ruby1.class # Rational
Regexp:
require 'json/add/regexp' ruby0 = Regexp.new('foo') # (?-mix:foo) json = JSON.generate(ruby0) # {"json_class":"Regexp","o":0,"s":"foo"} ruby1 = JSON.parse(json, create_additions: true) # (?-mix:foo) ruby1.class # Regexp
Set:
require 'json/add/set' ruby0 = Set.new([0, 1, 2]) # #<Set: {0, 1, 2}> json = JSON.generate(ruby0) # {"json_class":"Set","a":[0,1,2]} ruby1 = JSON.parse(json, create_additions: true) # #<Set: {0, 1, 2}> ruby1.class # Set
Struct:
require 'json/add/struct' Customer = Struct.new(:name, :address) # Customer ruby0 = Customer.new("Dave", "123 Main") # #<struct Customer name="Dave", address="123 Main"> json = JSON.generate(ruby0) # {"json_class":"Customer","v":["Dave","123 Main"]} ruby1 = JSON.parse(json, create_additions: true) # #<struct Customer name="Dave", address="123 Main"> ruby1.class # Customer
Symbol:
require 'json/add/symbol' ruby0 = :foo # foo json = JSON.generate(ruby0) # {"json_class":"Symbol","s":"foo"} ruby1 = JSON.parse(json, create_additions: true) # foo ruby1.class # Symbol
Time:
require 'json/add/time' ruby0 = Time.now # 2020-05-02 11:28:26 -0500 json = JSON.generate(ruby0) # {"json_class":"Time","s":1588436906,"n":840560000} ruby1 = JSON.parse(json, create_additions: true) # 2020-05-02 11:28:26 -0500 ruby1.class # Time
In addition to the JSON additions provided, you can craft JSON additions of your own, either for Ruby built-in classes or for user-defined classes.
Here’s a user-defined class Foo
:
class Foo attr_accessor :bar, :baz def initialize(bar, baz) self.bar = bar self.baz = baz end end
Here’s the JSON addition for it:
# Extend class Foo with JSON addition. class Foo # Serialize Foo object with its class name and arguments def to_json(*args) { JSON.create_id => self.class.name, 'a' => [ bar, baz ] }.to_json(*args) end # Deserialize JSON string by constructing new Foo object with arguments. def self.json_create(object) new(*object['a']) end end
Demonstration:
require 'json' # This Foo object has no custom addition. foo0 = Foo.new(0, 1) json0 = JSON.generate(foo0) obj0 = JSON.parse(json0) # Lood the custom addition. require_relative 'foo_addition' # This foo has the custom addition. foo1 = Foo.new(0, 1) json1 = JSON.generate(foo1) obj1 = JSON.parse(json1, create_additions: true) # Make a nice display. display = <<EOT Generated JSON: Without custom addition: #{json0} (#{json0.class}) With custom addition: #{json1} (#{json1.class}) Parsed JSON: Without custom addition: #{obj0.inspect} (#{obj0.class}) With custom addition: #{obj1.inspect} (#{obj1.class}) EOT puts display
Output:
Generated JSON: Without custom addition: "#<Foo:0x0000000006534e80>" (String) With custom addition: {"json_class":"Foo","a":[0,1]} (String) Parsed JSON: Without custom addition: "#<Foo:0x0000000006534e80>" (String) With custom addition: #<Foo:0x0000000006473bb8 @bar=0, @baz=1> (Foo)
OpenSSL
provides SSL
, TLS and general purpose cryptography. It wraps the OpenSSL library.
All examples assume you have loaded OpenSSL
with:
require 'openssl'
These examples build atop each other. For example the key created in the next is used in throughout these examples.
This example creates a 2048 bit RSA keypair and writes it to the current directory.
key = OpenSSL::PKey::RSA.new 2048 open 'private_key.pem', 'w' do |io| io.write key.to_pem end open 'public_key.pem', 'w' do |io| io.write key.public_key.to_pem end
Keys saved to disk without encryption are not secure as anyone who gets ahold of the key may use it unless it is encrypted. In order to securely export a key you may export it with a pass phrase.
cipher = OpenSSL::Cipher.new 'AES-256-CBC' pass_phrase = 'my secure pass phrase goes here' key_secure = key.export cipher, pass_phrase open 'private.secure.pem', 'w' do |io| io.write key_secure end
OpenSSL::Cipher.ciphers
returns a list of available ciphers.
A key can also be loaded from a file.
key2 = OpenSSL::PKey::RSA.new File.read 'private_key.pem' key2.public? # => true key2.private? # => true
or
key3 = OpenSSL::PKey::RSA.new File.read 'public_key.pem' key3.public? # => true key3.private? # => false
OpenSSL
will prompt you for your pass phrase when loading an encrypted key. If you will not be able to type in the pass phrase you may provide it when loading the key:
key4_pem = File.read 'private.secure.pem' pass_phrase = 'my secure pass phrase goes here' key4 = OpenSSL::PKey::RSA.new key4_pem, pass_phrase
RSA provides encryption and decryption using the public and private keys. You can use a variety of padding methods depending upon the intended use of encrypted data.
Asymmetric public/private key encryption is slow and victim to attack in cases where it is used without padding or directly to encrypt larger chunks of data. Typical use cases for RSA encryption involve “wrapping” a symmetric key with the public key of the recipient who would “unwrap” that symmetric key again using their private key. The following illustrates a simplified example of such a key transport scheme. It shouldn’t be used in practice, though, standardized protocols should always be preferred.
wrapped_key = key.public_encrypt key
A symmetric key encrypted with the public key can only be decrypted with the corresponding private key of the recipient.
original_key = key.private_decrypt wrapped_key
By default PKCS#1 padding will be used, but it is also possible to use other forms of padding, see PKey::RSA
for further details.
Using “private_encrypt” to encrypt some data with the private key is equivalent to applying a digital signature to the data. A verifying party may validate the signature by comparing the result of decrypting the signature with “public_decrypt” to the original data. However, OpenSSL::PKey
already has methods “sign” and “verify” that handle digital signatures in a standardized way - “private_encrypt” and “public_decrypt” shouldn’t be used in practice.
To sign a document, a cryptographically secure hash of the document is computed first, which is then signed using the private key.
signature = key.sign 'SHA256', document
To validate the signature, again a hash of the document is computed and the signature is decrypted using the public key. The result is then compared to the hash just computed, if they are equal the signature was valid.
if key.verify 'SHA256', signature, document puts 'Valid' else puts 'Invalid' end
If supported by the underlying OpenSSL
version used, Password-based Encryption should use the features of PKCS5
. If not supported or if required by legacy applications, the older, less secure methods specified in RFC 2898 are also supported (see below).
PKCS5
supports PBKDF2 as it was specified in PKCS#5 v2.0. It still uses a password, a salt, and additionally a number of iterations that will slow the key derivation process down. The slower this is, the more work it requires being able to brute-force the resulting key.
The strategy is to first instantiate a Cipher
for encryption, and then to generate a random IV plus a key derived from the password using PBKDF2. PKCS #5 v2.0 recommends at least 8 bytes for the salt, the number of iterations largely depends on the hardware being used.
cipher = OpenSSL::Cipher.new 'AES-256-CBC' cipher.encrypt iv = cipher.random_iv pwd = 'some hopefully not to easily guessable password' salt = OpenSSL::Random.random_bytes 16 iter = 20000 key_len = cipher.key_len digest = OpenSSL::Digest.new('SHA256') key = OpenSSL::PKCS5.pbkdf2_hmac(pwd, salt, iter, key_len, digest) cipher.key = key Now encrypt the data: encrypted = cipher.update document encrypted << cipher.final
Use the same steps as before to derive the symmetric AES key, this time setting the Cipher
up for decryption.
cipher = OpenSSL::Cipher.new 'AES-256-CBC' cipher.decrypt cipher.iv = iv # the one generated with #random_iv pwd = 'some hopefully not to easily guessable password' salt = ... # the one generated above iter = 20000 key_len = cipher.key_len digest = OpenSSL::Digest.new('SHA256') key = OpenSSL::PKCS5.pbkdf2_hmac(pwd, salt, iter, key_len, digest) cipher.key = key Now decrypt the data: decrypted = cipher.update encrypted decrypted << cipher.final
PKCS #5 is a password-based encryption standard documented at RFC2898. It allows a short password or passphrase to be used to create a secure encryption key. If possible, PBKDF2 as described above should be used if the circumstances allow it.
PKCS #5 uses a Cipher
, a pass phrase and a salt to generate an encryption key.
pass_phrase = 'my secure pass phrase goes here' salt = '8 octets'
First set up the cipher for encryption
encryptor = OpenSSL::Cipher.new 'AES-256-CBC' encryptor.encrypt encryptor.pkcs5_keyivgen pass_phrase, salt
Then pass the data you want to encrypt through
encrypted = encryptor.update 'top secret document' encrypted << encryptor.final
Use a new Cipher
instance set up for decryption
decryptor = OpenSSL::Cipher.new 'AES-256-CBC' decryptor.decrypt decryptor.pkcs5_keyivgen pass_phrase, salt
Then pass the data you want to decrypt through
plain = decryptor.update encrypted plain << decryptor.final
X509
Certificates This example creates a self-signed certificate using an RSA key and a SHA1 signature.
key = OpenSSL::PKey::RSA.new 2048 name = OpenSSL::X509::Name.parse '/CN=nobody/DC=example' cert = OpenSSL::X509::Certificate.new cert.version = 2 cert.serial = 0 cert.not_before = Time.now cert.not_after = Time.now + 3600 cert.public_key = key.public_key cert.subject = name
You can add extensions to the certificate with OpenSSL::SSL::ExtensionFactory to indicate the purpose of the certificate.
extension_factory = OpenSSL::X509::ExtensionFactory.new nil, cert cert.add_extension \ extension_factory.create_extension('basicConstraints', 'CA:FALSE', true) cert.add_extension \ extension_factory.create_extension( 'keyUsage', 'keyEncipherment,dataEncipherment,digitalSignature') cert.add_extension \ extension_factory.create_extension('subjectKeyIdentifier', 'hash')
The list of supported extensions (and in some cases their possible values) can be derived from the “objects.h” file in the OpenSSL
source code.
To sign a certificate set the issuer and use OpenSSL::X509::Certificate#sign
with a digest algorithm. This creates a self-signed cert because we’re using the same name and key to sign the certificate as was used to create the certificate.
cert.issuer = name cert.sign key, OpenSSL::Digest.new('SHA1') open 'certificate.pem', 'w' do |io| io.write cert.to_pem end
Like a key, a cert can also be loaded from a file.
cert2 = OpenSSL::X509::Certificate.new File.read 'certificate.pem'
Certificate#verify will return true when a certificate was signed with the given public key.
raise 'certificate can not be verified' unless cert2.verify key
A certificate authority (CA) is a trusted third party that allows you to verify the ownership of unknown certificates. The CA issues key signatures that indicate it trusts the user of that key. A user encountering the key can verify the signature by using the CA’s public key.
CA keys are valuable, so we encrypt and save it to disk and make sure it is not readable by other users.
ca_key = OpenSSL::PKey::RSA.new 2048 pass_phrase = 'my secure pass phrase goes here' cipher = OpenSSL::Cipher.new 'AES-256-CBC' open 'ca_key.pem', 'w', 0400 do |io| io.write ca_key.export(cipher, pass_phrase) end
A CA certificate is created the same way we created a certificate above, but with different extensions.
ca_name = OpenSSL::X509::Name.parse '/CN=ca/DC=example' ca_cert = OpenSSL::X509::Certificate.new ca_cert.serial = 0 ca_cert.version = 2 ca_cert.not_before = Time.now ca_cert.not_after = Time.now + 86400 ca_cert.public_key = ca_key.public_key ca_cert.subject = ca_name ca_cert.issuer = ca_name extension_factory = OpenSSL::X509::ExtensionFactory.new extension_factory.subject_certificate = ca_cert extension_factory.issuer_certificate = ca_cert ca_cert.add_extension \ extension_factory.create_extension('subjectKeyIdentifier', 'hash')
This extension indicates the CA’s key may be used as a CA.
ca_cert.add_extension \ extension_factory.create_extension('basicConstraints', 'CA:TRUE', true)
This extension indicates the CA’s key may be used to verify signatures on both certificates and certificate revocations.
ca_cert.add_extension \ extension_factory.create_extension( 'keyUsage', 'cRLSign,keyCertSign', true)
Root CA certificates are self-signed.
ca_cert.sign ca_key, OpenSSL::Digest.new('SHA1')
The CA certificate is saved to disk so it may be distributed to all the users of the keys this CA will sign.
open 'ca_cert.pem', 'w' do |io| io.write ca_cert.to_pem end
The CA signs keys through a Certificate Signing Request (CSR). The CSR contains the information necessary to identify the key.
csr = OpenSSL::X509::Request.new csr.version = 0 csr.subject = name csr.public_key = key.public_key csr.sign key, OpenSSL::Digest.new('SHA1')
A CSR is saved to disk and sent to the CA for signing.
open 'csr.pem', 'w' do |io| io.write csr.to_pem end
Upon receiving a CSR the CA will verify it before signing it. A minimal verification would be to check the CSR’s signature.
csr = OpenSSL::X509::Request.new File.read 'csr.pem' raise 'CSR can not be verified' unless csr.verify csr.public_key
After verification a certificate is created, marked for various usages, signed with the CA key and returned to the requester.
csr_cert = OpenSSL::X509::Certificate.new csr_cert.serial = 0 csr_cert.version = 2 csr_cert.not_before = Time.now csr_cert.not_after = Time.now + 600 csr_cert.subject = csr.subject csr_cert.public_key = csr.public_key csr_cert.issuer = ca_cert.subject extension_factory = OpenSSL::X509::ExtensionFactory.new extension_factory.subject_certificate = csr_cert extension_factory.issuer_certificate = ca_cert csr_cert.add_extension \ extension_factory.create_extension('basicConstraints', 'CA:FALSE') csr_cert.add_extension \ extension_factory.create_extension( 'keyUsage', 'keyEncipherment,dataEncipherment,digitalSignature') csr_cert.add_extension \ extension_factory.create_extension('subjectKeyIdentifier', 'hash') csr_cert.sign ca_key, OpenSSL::Digest.new('SHA1') open 'csr_cert.pem', 'w' do |io| io.write csr_cert.to_pem end
SSL
and TLS Connections Using our created key and certificate we can create an SSL
or TLS connection. An SSLContext is used to set up an SSL
session.
context = OpenSSL::SSL::SSLContext.new
SSL
Server An SSL
server requires the certificate and private key to communicate securely with its clients:
context.cert = cert context.key = key
Then create an SSLServer with a TCP server socket and the context. Use the SSLServer like an ordinary TCP server.
require 'socket' tcp_server = TCPServer.new 5000 ssl_server = OpenSSL::SSL::SSLServer.new tcp_server, context loop do ssl_connection = ssl_server.accept data = connection.gets response = "I got #{data.dump}" puts response connection.puts "I got #{data.dump}" connection.close end
SSL
client An SSL
client is created with a TCP socket and the context. SSLSocket#connect must be called to initiate the SSL
handshake and start encryption. A key and certificate are not required for the client socket.
Note that SSLSocket#close doesn’t close the underlying socket by default. Set
SSLSocket#sync_close to true if you want.
require 'socket' tcp_socket = TCPSocket.new 'localhost', 5000 ssl_client = OpenSSL::SSL::SSLSocket.new tcp_socket, context ssl_client.sync_close = true ssl_client.connect ssl_client.puts "hello server!" puts ssl_client.gets ssl_client.close # shutdown the TLS connection and close tcp_socket
An unverified SSL
connection does not provide much security. For enhanced security the client or server can verify the certificate of its peer.
The client can be modified to verify the server’s certificate against the certificate authority’s certificate:
context.ca_file = 'ca_cert.pem' context.verify_mode = OpenSSL::SSL::VERIFY_PEER require 'socket' tcp_socket = TCPSocket.new 'localhost', 5000 ssl_client = OpenSSL::SSL::SSLSocket.new tcp_socket, context ssl_client.connect ssl_client.puts "hello server!" puts ssl_client.gets
If the server certificate is invalid or context.ca_file
is not set when verifying peers an OpenSSL::SSL::SSLError
will be raised.
FileTest
implements file test operations similar to those used in File::Stat
. It exists as a standalone module, and its methods are also insinuated into the File
class. (Note that this is not done by inclusion: the interpreter cheats).