Results for: "String# "

Returns whether or not the constant const is defined. You may optionally pass the type of const as [const, type], such as:

have_const(%w[PTHREAD_MUTEX_INITIALIZER pthread_mutex_t], "pthread.h")

You may also pass additional headers to check against in addition to the common header files, and additional flags to opt which are then passed along to the compiler.

If found, a macro is passed as a preprocessor constant to the compiler using the type name, in uppercase, prepended with HAVE_CONST_.

For example, if have_const('foo') returned true, then the HAVE_CONST_FOO preprocessor macro would be passed to the compiler.

Returns the convertible integer type of the given type. You may optionally specify additional headers to search in for the type. convertible means actually the same type, or typedef’d from the same type.

If the type is an integer type and the convertible type is found, the following macros are passed as preprocessor constants to the compiler using the type name, in uppercase.

For example, if foobar_t is defined as unsigned long, then convertible_int("foobar_t") would return “unsigned long”, and define these macros:

#define TYPEOF_FOOBAR_T unsigned long
#define FOOBART2NUM ULONG2NUM
#define NUM2FOOBART NUM2ULONG

Searches for the executable bin on path. The default path is your PATH environment variable. If that isn’t defined, it will resort to searching /usr/local/bin, /usr/ucb, /usr/bin and /bin.

If found, it will return the full path, including the executable name, of where it was found.

Note that this method does not actually affect the generated Makefile.

No documentation available
No documentation available

Returns a Hash of the defined schemes.

Open3.pipeline_rw starts a list of commands as a pipeline with pipes which connect to stdin of the first command and stdout of the last command.

Open3.pipeline_rw(cmd1, cmd2, ... [, opts]) {|first_stdin, last_stdout, wait_threads|
  ...
}

first_stdin, last_stdout, wait_threads = Open3.pipeline_rw(cmd1, cmd2, ... [, opts])
...
first_stdin.close
last_stdout.close

Each cmd is a string or an array. If it is an array, the elements are passed to Process.spawn.

cmd:
  commandline                              command line string which is passed to a shell
  [env, commandline, opts]                 command line string which is passed to a shell
  [env, cmdname, arg1, ..., opts]          command name and one or more arguments (no shell)
  [env, [cmdname, argv0], arg1, ..., opts] command name and arguments including argv[0] (no shell)

Note that env and opts are optional, as for Process.spawn.

The options to pass to Process.spawn are constructed by merging opts, the last hash element of the array, and specifications for the pipes between each of the commands.

Example:

Open3.pipeline_rw("tr -dc A-Za-z", "wc -c") {|i, o, ts|
  i.puts "All persons more than a mile high to leave the court."
  i.close
  p o.gets #=> "42\n"
}

Open3.pipeline_rw("sort", "cat -n") {|stdin, stdout, wait_thrs|
  stdin.puts "foo"
  stdin.puts "bar"
  stdin.puts "baz"
  stdin.close     # send EOF to sort.
  p stdout.read   #=> "     1\tbar\n     2\tbaz\n     3\tfoo\n"
}

Open3.pipeline_rw starts a list of commands as a pipeline with pipes which connect to stdin of the first command and stdout of the last command.

Open3.pipeline_rw(cmd1, cmd2, ... [, opts]) {|first_stdin, last_stdout, wait_threads|
  ...
}

first_stdin, last_stdout, wait_threads = Open3.pipeline_rw(cmd1, cmd2, ... [, opts])
...
first_stdin.close
last_stdout.close

Each cmd is a string or an array. If it is an array, the elements are passed to Process.spawn.

cmd:
  commandline                              command line string which is passed to a shell
  [env, commandline, opts]                 command line string which is passed to a shell
  [env, cmdname, arg1, ..., opts]          command name and one or more arguments (no shell)
  [env, [cmdname, argv0], arg1, ..., opts] command name and arguments including argv[0] (no shell)

Note that env and opts are optional, as for Process.spawn.

The options to pass to Process.spawn are constructed by merging opts, the last hash element of the array, and specifications for the pipes between each of the commands.

Example:

Open3.pipeline_rw("tr -dc A-Za-z", "wc -c") {|i, o, ts|
  i.puts "All persons more than a mile high to leave the court."
  i.close
  p o.gets #=> "42\n"
}

Open3.pipeline_rw("sort", "cat -n") {|stdin, stdout, wait_thrs|
  stdin.puts "foo"
  stdin.puts "bar"
  stdin.puts "baz"
  stdin.close     # send EOF to sort.
  p stdout.read   #=> "     1\tbar\n     2\tbaz\n     3\tfoo\n"
}
No documentation available
No documentation available

Returns the time resolution returned by POSIX clock_getres() function.

clock_id specifies a kind of clock. See the document of Process.clock_gettime for details.

clock_id can be a symbol as Process.clock_gettime. However the result may not be accurate. For example, Process.clock_getres(:GETTIMEOFDAY_BASED_CLOCK_REALTIME) returns 1.0e-06 which means 1 microsecond, but actual resolution can be more coarse.

If the given clock_id is not supported, Errno::EINVAL is raised.

unit specifies a type of the return value. Process.clock_getres accepts unit as Process.clock_gettime. The default value, :float_second, is also same as Process.clock_gettime.

Process.clock_getres also accepts :hertz as unit. :hertz means a the reciprocal of :float_second.

:hertz can be used to obtain the exact value of the clock ticks per second for times() function and CLOCKS_PER_SEC for clock() function.

Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns the clock ticks per second.

Process.clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns CLOCKS_PER_SEC.

p Process.clock_getres(Process::CLOCK_MONOTONIC)
#=> 1.0e-09
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available

This integer returns the current initial length of the buffer.

This sets the initial length of the buffer to length, if length > 0, otherwise its value isn’t changed.

No documentation available
No documentation available
Search took: 6ms  ·  Total Results: 3115