Results for: "uri"

No documentation available
No documentation available
No documentation available

Returns the paths to the source files for use with analysis and documentation tools. These paths are relative to full_gem_path.

No documentation available
No documentation available

Ensure that the dependency is satisfied by the current installation of gem. If it is not an exception is raised.

spec

Gem::Specification

dependency

Gem::Dependency

Writes the .gemspec specification (in Ruby) to the gem home’s specifications directory.

No documentation available

Verifies entry in a .gem file.

Verifies the files of the gem

No documentation available
No documentation available

Resolve the requested dependencies against the gems available via Gem.path and return an Array of Specification objects to be activated.

Yields each source in the list.

Writes a binary file to path which is relative to +@gemhome+

Given a gem file’s contents, validates against its own MD5 checksum

gem_data
String

Contents of the gem file

Returns the source encoding as an encoding object.

Note that the result may not be equal to the source encoding of the encoding converter if the conversion has multiple steps.

ec = Encoding::Converter.new("ISO-8859-1", "EUC-JP") # ISO-8859-1 -> UTF-8 -> EUC-JP
begin
  ec.convert("\xa0") # NO-BREAK SPACE, which is available in UTF-8 but not in EUC-JP.
rescue Encoding::UndefinedConversionError
  p $!.source_encoding              #=> #<Encoding:UTF-8>
  p $!.destination_encoding         #=> #<Encoding:EUC-JP>
  p $!.source_encoding_name         #=> "UTF-8"
  p $!.destination_encoding_name    #=> "EUC-JP"
end

Returns the source encoding as an encoding object.

Note that the result may not be equal to the source encoding of the encoding converter if the conversion has multiple steps.

ec = Encoding::Converter.new("ISO-8859-1", "EUC-JP") # ISO-8859-1 -> UTF-8 -> EUC-JP
begin
  ec.convert("\xa0") # NO-BREAK SPACE, which is available in UTF-8 but not in EUC-JP.
rescue Encoding::UndefinedConversionError
  p $!.source_encoding              #=> #<Encoding:UTF-8>
  p $!.destination_encoding         #=> #<Encoding:EUC-JP>
  p $!.source_encoding_name         #=> "UTF-8"
  p $!.destination_encoding_name    #=> "EUC-JP"
end

Returns the source encoding as an Encoding object.

possible opt elements:

hash form:
  :partial_input => true           # source buffer may be part of larger source
  :after_output => true            # stop conversion after output before input
integer form:
  Encoding::Converter::PARTIAL_INPUT
  Encoding::Converter::AFTER_OUTPUT

possible results:

:invalid_byte_sequence
:incomplete_input
:undefined_conversion
:after_output
:destination_buffer_full
:source_buffer_empty
:finished

primitive_convert converts source_buffer into destination_buffer.

source_buffer should be a string or nil. nil means an empty string.

destination_buffer should be a string.

destination_byteoffset should be an integer or nil. nil means the end of destination_buffer. If it is omitted, nil is assumed.

destination_bytesize should be an integer or nil. nil means unlimited. If it is omitted, nil is assumed.

opt should be nil, a hash or an integer. nil means no flags. If it is omitted, nil is assumed.

primitive_convert converts the content of source_buffer from beginning and store the result into destination_buffer.

destination_byteoffset and destination_bytesize specify the region which the converted result is stored. destination_byteoffset specifies the start position in destination_buffer in bytes. If destination_byteoffset is nil, destination_buffer.bytesize is used for appending the result. destination_bytesize specifies maximum number of bytes. If destination_bytesize is nil, destination size is unlimited. After conversion, destination_buffer is resized to destination_byteoffset + actually produced number of bytes. Also destination_buffer’s encoding is set to destination_encoding.

primitive_convert drops the converted part of source_buffer. the dropped part is converted in destination_buffer or buffered in Encoding::Converter object.

primitive_convert stops conversion when one of following condition met.

example:

ec = Encoding::Converter.new("UTF-8", "UTF-16BE")
ret = ec.primitive_convert(src="pi", dst="", nil, 100)
p [ret, src, dst] #=> [:finished, "", "\x00p\x00i"]

ec = Encoding::Converter.new("UTF-8", "UTF-16BE")
ret = ec.primitive_convert(src="pi", dst="", nil, 1)
p [ret, src, dst] #=> [:destination_buffer_full, "i", "\x00"]
ret = ec.primitive_convert(src, dst="", nil, 1)
p [ret, src, dst] #=> [:destination_buffer_full, "", "p"]
ret = ec.primitive_convert(src, dst="", nil, 1)
p [ret, src, dst] #=> [:destination_buffer_full, "", "\x00"]
ret = ec.primitive_convert(src, dst="", nil, 1)
p [ret, src, dst] #=> [:finished, "", "i"]

Parses a C prototype signature

If Hash tymap is provided, the return value and the arguments from the signature are expected to be keys, and the value will be the C type to be looked up.

Example:

require 'fiddle/import'

include Fiddle::CParser
  #=> Object

parse_signature('double sum(double, double)')
  #=> ["sum", Fiddle::TYPE_DOUBLE, [Fiddle::TYPE_DOUBLE, Fiddle::TYPE_DOUBLE]]

parse_signature('void update(void (*cb)(int code))')
  #=> ["update", Fiddle::TYPE_VOID, [Fiddle::TYPE_VOIDP]]

parse_signature('char (*getbuffer(void))[80]')
  #=> ["getbuffer", Fiddle::TYPE_VOIDP, []]

Writes s to the buffer. When the buffer is full or sync is true the buffer is flushed to the underlying socket.

Writes s in the non-blocking manner.

If there is buffered data, it is flushed first. This may block.

write_nonblock returns number of bytes written to the SSL connection.

When no data can be written without blocking it raises OpenSSL::SSL::SSLError extended by IO::WaitReadable or IO::WaitWritable.

IO::WaitReadable means SSL needs to read internally so write_nonblock should be called again after the underlying IO is readable.

IO::WaitWritable means SSL needs to write internally so write_nonblock should be called again after underlying IO is writable.

So OpenSSL::Buffering#write_nonblock needs two rescue clause as follows.

# emulates blocking write.
begin
  result = ssl.write_nonblock(str)
rescue IO::WaitReadable
  IO.select([io])
  retry
rescue IO::WaitWritable
  IO.select(nil, [io])
  retry
end

Note that one reason that write_nonblock reads from the underlying IO is when the peer requests a new TLS/SSL handshake. See the openssl FAQ for more details. www.openssl.org/support/faq.html

By specifying a keyword argument exception to false, you can indicate that write_nonblock should not raise an IO::Wait*able exception, but return the symbol :wait_writable or :wait_readable instead.

No documentation available
Search took: 4ms  ·  Total Results: 1091