EncodingError
is the base class for encoding errors.
SystemCallError
is the base class for all low-level platform-dependent errors.
The errors available on the current platform are subclasses of SystemCallError
and are defined in the Errno
module.
File.open("does/not/exist")
raises the exception:
Errno::ENOENT: No such file or directory - does/not/exist
DateTime
A subclass of Date
that easily handles date, hour, minute, second, and offset.
DateTime
does not consider any leap seconds, does not track any summer time rules.
A DateTime
object is created with DateTime::new
, DateTime::jd
, DateTime::ordinal
, DateTime::commercial
, DateTime::parse
, DateTime::strptime
, DateTime::now
, Time#to_datetime
, etc.
require 'date' DateTime.new(2001,2,3,4,5,6) #=> #<DateTime: 2001-02-03T04:05:06+00:00 ...>
The last element of day, hour, minute, or second can be a fractional number. The fractional number’s precision is assumed at most nanosecond.
DateTime.new(2001,2,3.5) #=> #<DateTime: 2001-02-03T12:00:00+00:00 ...>
An optional argument, the offset, indicates the difference between the local time and UTC. For example, Rational(3,24)
represents ahead of 3 hours of UTC, Rational(-5,24)
represents behind of 5 hours of UTC. The offset should be -1 to +1, and its precision is assumed at most second. The default value is zero (equals to UTC).
DateTime.new(2001,2,3,4,5,6,Rational(3,24)) #=> #<DateTime: 2001-02-03T04:05:06+03:00 ...>
The offset also accepts string form:
DateTime.new(2001,2,3,4,5,6,'+03:00') #=> #<DateTime: 2001-02-03T04:05:06+03:00 ...>
An optional argument, the day of calendar reform (start
), denotes a Julian day number, which should be 2298874 to 2426355 or negative/positive infinity. The default value is Date::ITALY
(2299161=1582-10-15).
A DateTime
object has various methods. See each reference.
d = DateTime.parse('3rd Feb 2001 04:05:06+03:30') #=> #<DateTime: 2001-02-03T04:05:06+03:30 ...> d.hour #=> 4 d.min #=> 5 d.sec #=> 6 d.offset #=> (7/48) d.zone #=> "+03:30" d += Rational('1.5') #=> #<DateTime: 2001-02-04%16:05:06+03:30 ...> d = d.new_offset('+09:00') #=> #<DateTime: 2001-02-04%21:35:06+09:00 ...> d.strftime('%I:%M:%S %p') #=> "09:35:06 PM" d > DateTime.new(1999) #=> true
DateTime
and when should you use Time
? It’s a common misconception that William Shakespeare and Miguel de Cervantes died on the same day in history - so much so that UNESCO named April 23 as World Book Day because of this fact. However, because England hadn’t yet adopted the Gregorian Calendar Reform (and wouldn’t until 1752) their deaths are actually 10 days apart. Since Ruby’s Time
class implements a proleptic Gregorian calendar and has no concept of calendar reform there’s no way to express this with Time
objects. This is where DateTime
steps in:
shakespeare = DateTime.iso8601('1616-04-23', Date::ENGLAND) #=> Tue, 23 Apr 1616 00:00:00 +0000 cervantes = DateTime.iso8601('1616-04-23', Date::ITALY) #=> Sat, 23 Apr 1616 00:00:00 +0000
Already you can see something is weird - the days of the week are different. Taking this further:
cervantes == shakespeare #=> false (shakespeare - cervantes).to_i #=> 10
This shows that in fact they died 10 days apart (in reality 11 days since Cervantes died a day earlier but was buried on the 23rd). We can see the actual date of Shakespeare’s death by using the gregorian
method to convert it:
shakespeare.gregorian #=> Tue, 03 May 1616 00:00:00 +0000
So there’s an argument that all the celebrations that take place on the 23rd April in Stratford-upon-Avon are actually the wrong date since England is now using the Gregorian calendar. You can see why when we transition across the reform date boundary:
# start off with the anniversary of Shakespeare's birth in 1751 shakespeare = DateTime.iso8601('1751-04-23', Date::ENGLAND) #=> Tue, 23 Apr 1751 00:00:00 +0000 # add 366 days since 1752 is a leap year and April 23 is after February 29 shakespeare + 366 #=> Thu, 23 Apr 1752 00:00:00 +0000 # add another 365 days to take us to the anniversary in 1753 shakespeare + 366 + 365 #=> Fri, 04 May 1753 00:00:00 +0000
As you can see, if we’re accurately tracking the number of solar years since Shakespeare’s birthday then the correct anniversary date would be the 4th May and not the 23rd April.
So when should you use DateTime
in Ruby and when should you use Time
? Almost certainly you’ll want to use Time
since your app is probably dealing with current dates and times. However, if you need to deal with dates and times in a historical context you’ll want to use DateTime
to avoid making the same mistakes as UNESCO. If you also have to deal with timezones then best of luck - just bear in mind that you’ll probably be dealing with local solar times, since it wasn’t until the 19th century that the introduction of the railways necessitated the need for Standard Time and eventually timezones.
Time
is an abstraction of dates and times. Time
is stored internally as the number of seconds with fraction since the Epoch, January 1, 1970 00:00 UTC. Also see the library module Date
. The Time
class treats GMT (Greenwich Mean Time
) and UTC (Coordinated Universal Time
) as equivalent. GMT is the older way of referring to these baseline times but persists in the names of calls on POSIX systems.
All times may have fraction. Be aware of this fact when comparing times with each other – times that are apparently equal when displayed may be different when compared.
Since Ruby 1.9.2, Time
implementation uses a signed 63 bit integer, Bignum or Rational
. The integer is a number of nanoseconds since the Epoch which can represent 1823-11-12 to 2116-02-20. When Bignum or Rational
is used (before 1823, after 2116, under nanosecond), Time
works slower as when integer is used.
All of these examples were done using the EST timezone which is GMT-5.
Time
instance You can create a new instance of Time
with Time::new
. This will use the current system time. Time::now
is an alias for this. You can also pass parts of the time to Time::new
such as year, month, minute, etc. When you want to construct a time this way you must pass at least a year. If you pass the year with nothing else time will default to January 1 of that year at 00:00:00 with the current system timezone. Here are some examples:
Time.new(2002) #=> 2002-01-01 00:00:00 -0500 Time.new(2002, 10) #=> 2002-10-01 00:00:00 -0500 Time.new(2002, 10, 31) #=> 2002-10-31 00:00:00 -0500
You can pass a UTC offset:
Time.new(2002, 10, 31, 2, 2, 2, "+02:00") #=> 2002-10-31 02:02:02 +0200
Or a timezone object:
tz = timezone("Europe/Athens") # Eastern European Time, UTC+2 Time.new(2002, 10, 31, 2, 2, 2, tz) #=> 2002-10-31 02:02:02 +0200
You can also use Time::gm
, Time::local
and Time::utc
to infer GMT, local and UTC timezones instead of using the current system setting.
You can also create a new time using Time::at
which takes the number of seconds (or fraction of seconds) since the Unix Epoch.
Time.at(628232400) #=> 1989-11-28 00:00:00 -0500
Time
Once you have an instance of Time
there is a multitude of things you can do with it. Below are some examples. For all of the following examples, we will work on the assumption that you have done the following:
t = Time.new(1993, 02, 24, 12, 0, 0, "+09:00")
Was that a monday?
t.monday? #=> false
What year was that again?
t.year #=> 1993
Was it daylight savings at the time?
t.dst? #=> false
What’s the day a year later?
t + (60*60*24*365) #=> 1994-02-24 12:00:00 +0900
How many seconds was that since the Unix Epoch?
t.to_i #=> 730522800
You can also do standard functions like compare two times.
t1 = Time.new(2010) t2 = Time.new(2011) t1 == t2 #=> false t1 == t1 #=> true t1 < t2 #=> true t1 > t2 #=> false Time.new(2010,10,31).between?(t1, t2) #=> true
A timezone argument must have local_to_utc
and utc_to_local
methods, and may have name
and abbr
methods.
The local_to_utc
method should convert a Time-like object from the timezone to UTC, and utc_to_local
is the opposite. The result also should be a Time
or Time-like object (not necessary to be the same class). The zone
of the result is just ignored. Time-like argument to these methods is similar to a Time
object in UTC without sub-second; it has attribute readers for the parts, e.g. year
, month
, and so on, and epoch time readers, to_i
. The sub-second attributes are fixed as 0, and utc_offset
, zone
, isdst
, and their aliases are same as a Time
object in UTC. Also to_time
, +
, and -
methods are defined.
The name
method is used for marshaling. If this method is not defined on a timezone object, Time
objects using that timezone object can not be dumped by Marshal
.
The abbr
method is used by ‘%Z’ in strftime
.
At loading marshaled data, a timezone name will be converted to a timezone object by find_timezone
class method, if the method is defined.
Similary, that class method will be called when a timezone argument does not have the necessary methods mentioned above.
Expect library adds the IO
instance method expect
, which does similar act to tcl’s expect extension.
In order to use this method, you must require expect:
require 'expect'
Please see expect
for usage.
The IO
class is the basis for all input and output in Ruby. An I/O stream may be duplexed (that is, bidirectional), and so may use more than one native operating system stream.
Many of the examples in this section use the File
class, the only standard subclass of IO
. The two classes are closely associated. Like the File
class, the Socket
library subclasses from IO
(such as TCPSocket
or UDPSocket
).
The Kernel#open
method can create an IO
(or File
) object for these types of arguments:
A plain string represents a filename suitable for the underlying operating system.
A string starting with "|"
indicates a subprocess. The remainder of the string following the "|"
is invoked as a process with appropriate input/output channels connected to it.
A string equal to "|-"
will create another Ruby instance as a subprocess.
The IO
may be opened with different file modes (read-only, write-only) and encodings for proper conversion. See IO.new
for these options. See Kernel#open
for details of the various command formats described above.
IO.popen
, the Open3
library, or Process#spawn may also be used to communicate with subprocesses through an IO
.
Ruby will convert pathnames between different operating system conventions if possible. For instance, on a Windows system the filename "/gumby/ruby/test.rb"
will be opened as "\gumby\ruby\test.rb"
. When specifying a Windows-style filename in a Ruby string, remember to escape the backslashes:
"C:\\gumby\\ruby\\test.rb"
Our examples here will use the Unix-style forward slashes; File::ALT_SEPARATOR can be used to get the platform-specific separator character.
The global constant ARGF
(also accessible as $<
) provides an IO-like stream which allows access to all files mentioned on the command line (or STDIN if no files are mentioned). ARGF#path
and its alias ARGF#filename
are provided to access the name of the file currently being read.
The io/console extension provides methods for interacting with the console. The console can be accessed from IO.console
or the standard input/output/error IO
objects.
Requiring io/console adds the following methods:
Example:
require 'io/console' rows, columns = $stdout.winsize puts "Your screen is #{columns} wide and #{rows} tall"
An OpenStruct
is a data structure, similar to a Hash
, that allows the definition of arbitrary attributes with their accompanying values. This is accomplished by using Ruby’s metaprogramming to define methods on the class itself.
require "ostruct" person = OpenStruct.new person.name = "John Smith" person.age = 70 person.name # => "John Smith" person.age # => 70 person.address # => nil
An OpenStruct
employs a Hash
internally to store the attributes and values and can even be initialized with one:
australia = OpenStruct.new(:country => "Australia", :capital => "Canberra") # => #<OpenStruct country="Australia", capital="Canberra">
Hash
keys with spaces or characters that could normally not be used for method calls (e.g. ()[]*
) will not be immediately available on the OpenStruct
object as a method for retrieval or assignment, but can still be reached through the Object#send
method.
measurements = OpenStruct.new("length (in inches)" => 24) measurements.send("length (in inches)") # => 24 message = OpenStruct.new(:queued? => true) message.queued? # => true message.send("queued?=", false) message.queued? # => false
Removing the presence of an attribute requires the execution of the delete_field
method as setting the property value to nil
will not remove the attribute.
first_pet = OpenStruct.new(:name => "Rowdy", :owner => "John Smith") second_pet = OpenStruct.new(:name => "Rowdy") first_pet.owner = nil first_pet # => #<OpenStruct name="Rowdy", owner=nil> first_pet == second_pet # => false first_pet.delete_field(:owner) first_pet # => #<OpenStruct name="Rowdy"> first_pet == second_pet # => true
An OpenStruct
utilizes Ruby’s method lookup structure to find and define the necessary methods for properties. This is accomplished through the methods method_missing and define_singleton_method.
This should be a consideration if there is a concern about the performance of the objects that are created, as there is much more overhead in the setting of these properties compared to using a Hash
or a Struct
.
Pathname
represents the name of a file or directory on the filesystem, but not the file itself.
The pathname depends on the Operating System: Unix, Windows, etc. This library works with pathnames of local OS, however non-Unix pathnames are supported experimentally.
A Pathname
can be relative or absolute. It’s not until you try to reference the file that it even matters whether the file exists or not.
Pathname
is immutable. It has no method for destructive update.
The goal of this class is to manipulate file path information in a neater way than standard Ruby provides. The examples below demonstrate the difference.
All functionality from File
, FileTest
, and some from Dir
and FileUtils
is included, in an unsurprising way. It is essentially a facade for all of these, and more.
Pathname
require 'pathname' pn = Pathname.new("/usr/bin/ruby") size = pn.size # 27662 isdir = pn.directory? # false dir = pn.dirname # Pathname:/usr/bin base = pn.basename # Pathname:ruby dir, base = pn.split # [Pathname:/usr/bin, Pathname:ruby] data = pn.read pn.open { |f| _ } pn.each_line { |line| _ }
pn = "/usr/bin/ruby" size = File.size(pn) # 27662 isdir = File.directory?(pn) # false dir = File.dirname(pn) # "/usr/bin" base = File.basename(pn) # "ruby" dir, base = File.split(pn) # ["/usr/bin", "ruby"] data = File.read(pn) File.open(pn) { |f| _ } File.foreach(pn) { |line| _ }
p1 = Pathname.new("/usr/lib") # Pathname:/usr/lib p2 = p1 + "ruby/1.8" # Pathname:/usr/lib/ruby/1.8 p3 = p1.parent # Pathname:/usr p4 = p2.relative_path_from(p3) # Pathname:lib/ruby/1.8 pwd = Pathname.pwd # Pathname:/home/gavin pwd.absolute? # true p5 = Pathname.new "." # Pathname:. p5 = p5 + "music/../articles" # Pathname:music/../articles p5.cleanpath # Pathname:articles p5.realpath # Pathname:/home/gavin/articles p5.children # [Pathname:/home/gavin/articles/linux, ...]
These methods are effectively manipulating a String
, because that’s all a path is. None of these access the file system except for mountpoint?
, children
, each_child
, realdirpath
and realpath
.
+
File
status predicate methods These methods are a facade for FileTest:
File
property and manipulation methods These methods are a facade for File:
open
(*args, &block)
These methods are a facade for Dir:
each_entry
(&block)
IO
These methods are a facade for IO:
each_line
(*args, &block)
These methods are a mixture of Find
, FileUtils
, and others:
Method
documentation As the above section shows, most of the methods in Pathname
are facades. The documentation for these methods generally just says, for instance, “See FileTest.writable?
”, as you should be familiar with the original method anyway, and its documentation (e.g. through ri
) will contain more information. In some cases, a brief description will follow.
Ripper
is a Ruby script parser.
You can get information from the parser with event-based style. Information such as abstract syntax trees or simple lexical analysis of the Ruby program.
Ripper
provides an easy interface for parsing your program into a symbolic expression tree (or S-expression).
Understanding the output of the parser may come as a challenge, it’s recommended you use PP
to format the output for legibility.
require 'ripper' require 'pp' pp Ripper.sexp('def hello(world) "Hello, #{world}!"; end') #=> [:program, [[:def, [:@ident, "hello", [1, 4]], [:paren, [:params, [[:@ident, "world", [1, 10]]], nil, nil, nil, nil, nil, nil]], [:bodystmt, [[:string_literal, [:string_content, [:@tstring_content, "Hello, ", [1, 18]], [:string_embexpr, [[:var_ref, [:@ident, "world", [1, 27]]]]], [:@tstring_content, "!", [1, 33]]]]], nil, nil, nil]]]]
You can see in the example above, the expression starts with :program
.
From here, a method definition at :def
, followed by the method’s identifier :@ident
. After the method’s identifier comes the parentheses :paren
and the method parameters under :params
.
Next is the method body, starting at :bodystmt
(stmt
meaning statement), which contains the full definition of the method.
In our case, we’re simply returning a String
, so next we have the :string_literal
expression.
Within our :string_literal
you’ll notice two @tstring_content
, this is the literal part for Hello,
and !
. Between the two @tstring_content
statements is a :string_embexpr
, where embexpr is an embedded expression. Our expression consists of a local variable, or var_ref
, with the identifier (@ident
) of world
.
ruby 1.9 (support CVS HEAD only)
bison 1.28 or later (Other yaccs do not work)
Ruby License.
Minero Aoki
aamine@loveruby.net
SocketError
is the error class for socket.
Pseudo I/O on String
object.
Commonly used to simulate ‘$stdio` or `$stderr`
require 'stringio' io = StringIO.new io.puts "Hello World" io.string #=> "Hello World\n"
StringScanner
provides for lexical scanning operations on a String
. Here is an example of its usage:
s = StringScanner.new('This is an example string') s.eos? # -> false p s.scan(/\w+/) # -> "This" p s.scan(/\w+/) # -> nil p s.scan(/\s+/) # -> " " p s.scan(/\s+/) # -> nil p s.scan(/\w+/) # -> "is" s.eos? # -> false p s.scan(/\s+/) # -> " " p s.scan(/\w+/) # -> "an" p s.scan(/\s+/) # -> " " p s.scan(/\w+/) # -> "example" p s.scan(/\s+/) # -> " " p s.scan(/\w+/) # -> "string" s.eos? # -> true p s.scan(/\s+/) # -> nil p s.scan(/\w+/) # -> nil
Scanning a string means remembering the position of a scan pointer, which is just an index. The point of scanning is to move forward a bit at a time, so matches are sought after the scan pointer; usually immediately after it.
Given the string “test string”, here are the pertinent scan pointer positions:
t e s t s t r i n g 0 1 2 ... 1 0
When you scan
for a pattern (a regular expression), the match must occur at the character after the scan pointer. If you use scan_until
, then the match can occur anywhere after the scan pointer. In both cases, the scan pointer moves just beyond the last character of the match, ready to scan again from the next character onwards. This is demonstrated by the example above.
Method
Categories There are other methods besides the plain scanners. You can look ahead in the string without actually scanning. You can access the most recent match. You can modify the string being scanned, reset or terminate the scanner, find out or change the position of the scan pointer, skip ahead, and so on.
beginning_of_line?
(bol?)
Data
There are aliases to several of the methods.
Raised by some IO
operations when reaching the end of file. Many IO
methods exist in two forms,
one that returns nil
when the end of file is reached, the other raises EOFError
.
EOFError
is a subclass of IOError
.
file = File.open("/etc/hosts") file.read file.gets #=> nil file.readline #=> EOFError: end of file reached
ARGF
is a stream designed for use in scripts that process files given as command-line arguments or passed in via STDIN.
The arguments passed to your script are stored in the ARGV
Array
, one argument per element. ARGF
assumes that any arguments that aren’t filenames have been removed from ARGV
. For example:
$ ruby argf.rb --verbose file1 file2 ARGV #=> ["--verbose", "file1", "file2"] option = ARGV.shift #=> "--verbose" ARGV #=> ["file1", "file2"]
You can now use ARGF
to work with a concatenation of each of these named files. For instance, ARGF.read
will return the contents of file1 followed by the contents of file2.
After a file in ARGV
has been read ARGF
removes it from the Array
. Thus, after all files have been read ARGV
will be empty.
You can manipulate ARGV
yourself to control what ARGF
operates on. If you remove a file from ARGV
, it is ignored by ARGF
; if you add files to ARGV
, they are treated as if they were named on the command line. For example:
ARGV.replace ["file1"] ARGF.readlines # Returns the contents of file1 as an Array ARGV #=> [] ARGV.replace ["file2", "file3"] ARGF.read # Returns the contents of file2 and file3
If ARGV
is empty, ARGF
acts as if it contained STDIN, i.e. the data piped to your script. For example:
$ echo "glark" | ruby -e 'p ARGF.read' "glark\n"
Outputs a source level execution trace of a Ruby program.
It does this by registering an event handler with Kernel#set_trace_func
for processing incoming events. It also provides methods for filtering unwanted trace output (see Tracer.add_filter
, Tracer.on
, and Tracer.off
).
Consider the following Ruby script
class A def square(a) return a*a end end a = A.new a.square(5)
Running the above script using ruby -r tracer example.rb
will output the following trace to STDOUT (Note you can also explicitly require 'tracer'
)
#0:<internal:lib/rubygems/custom_require>:38:Kernel:<: - #0:example.rb:3::-: class A #0:example.rb:3::C: class A #0:example.rb:4::-: def square(a) #0:example.rb:7::E: end #0:example.rb:9::-: a = A.new #0:example.rb:10::-: a.square(5) #0:example.rb:4:A:>: def square(a) #0:example.rb:5:A:-: return a*a #0:example.rb:6:A:<: end | | | | | | | | | ---------------------+ event | | | ------------------------+ class | | --------------------------+ line | ------------------------------------+ filename ---------------------------------------+ thread
Symbol
table used for displaying incoming events:
call a C-language routine
return from a C-language routine
call a Ruby method
C
start a class or module definition
E
finish a class or module definition
-
execute code on a new line
raise an exception
return from a Ruby method
by Keiju ISHITSUKA(keiju@ishitsuka.com)
This library provides debugging functionality to Ruby.
To add a debugger to your code, start by requiring debug
in your program:
def say(word) require 'debug' puts word end
This will cause Ruby to interrupt execution and show a prompt when the say
method is run.
Once you’re inside the prompt, you can start debugging your program.
(rdb:1) p word "hello"
You can get help at any time by pressing h
.
(rdb:1) h Debugger help v.-0.002b Commands b[reak] [file:|class:]<line|method> b[reak] [class.]<line|method> set breakpoint to some position wat[ch] <expression> set watchpoint to some expression cat[ch] (<exception>|off) set catchpoint to an exception b[reak] list breakpoints cat[ch] show catchpoint del[ete][ nnn] delete some or all breakpoints disp[lay] <expression> add expression into display expression list undisp[lay][ nnn] delete one particular or all display expressions c[ont] run until program ends or hit breakpoint s[tep][ nnn] step (into methods) one line or till line nnn n[ext][ nnn] go over one line or till line nnn w[here] display frames f[rame] alias for where l[ist][ (-|nn-mm)] list program, - lists backwards nn-mm lists given lines up[ nn] move to higher frame down[ nn] move to lower frame fin[ish] return to outer frame tr[ace] (on|off) set trace mode of current thread tr[ace] (on|off) all set trace mode of all threads q[uit] exit from debugger v[ar] g[lobal] show global variables v[ar] l[ocal] show local variables v[ar] i[nstance] <object> show instance variables of object v[ar] c[onst] <object> show constants of object m[ethod] i[nstance] <obj> show methods of object m[ethod] <class|module> show instance methods of class or module th[read] l[ist] list all threads th[read] c[ur[rent]] show current thread th[read] [sw[itch]] <nnn> switch thread context to nnn th[read] stop <nnn> stop thread nnn th[read] resume <nnn> resume thread nnn p expression evaluate expression and print its value h[elp] print this help <everything else> evaluate
The following is a list of common functionalities that the debugger provides.
In general, a debugger is used to find bugs in your program, which often means pausing execution and inspecting variables at some point in time.
Let’s look at an example:
def my_method(foo) require 'debug' foo = get_foo if foo.nil? raise if foo.nil? end
When you run this program, the debugger will kick in just before the foo
assignment.
(rdb:1) p foo nil
In this example, it’d be interesting to move to the next line and inspect the value of foo
again. You can do that by pressing n
:
(rdb:1) n # goes to next line (rdb:1) p foo nil
You now know that the original value of foo
was nil, and that it still was nil after calling get_foo
.
Other useful commands for navigating through your code are:
c
Runs the program until it either exists or encounters another breakpoint. You usually press c
when you are finished debugging your program and want to resume its execution.
s
Steps into method definition. In the previous example, s
would take you inside the method definition of get_foo
.
r
Restart the program.
q
Quit the program.
You can use the debugger to easily inspect both local and global variables. We’ve seen how to inspect local variables before:
(rdb:1) p my_arg 42
You can also pretty print the result of variables or expressions:
(rdb:1) pp %w{a very long long array containing many words} ["a", "very", "long", ... ]
You can list all local variables with +v l+:
(rdb:1) v l foo => "hello"
Similarly, you can show all global variables with +v g+:
(rdb:1) v g all global variables
Finally, you can omit p
if you simply want to evaluate a variable or expression
(rdb:1) 5**2 25
Ruby Debug provides more advanced functionalities like switching between threads, setting breakpoints and watch expressions, and more. The full list of commands is available at any time by pressing h
.
Make sure you remove every instance of +require ‘debug’+ before shipping your code. Failing to do so may result in your program hanging unpredictably.
Debug is not available in safe mode.
ERB
– Ruby Templating ERB
provides an easy to use but powerful templating system for Ruby. Using ERB
, actual Ruby code can be added to any plain text document for the purposes of generating document information details and/or flow control.
A very simple example is this:
require 'erb' x = 42 template = ERB.new <<-EOF The value of x is: <%= x %> EOF puts template.result(binding)
Prints: The value of x is: 42
More complex examples are given below.
ERB
recognizes certain tags in the provided template and converts them based on the rules below:
<% Ruby code -- inline with output %> <%= Ruby expression -- replace with result %> <%# comment -- ignored -- useful in testing %> % a line of Ruby code -- treated as <% line %> (optional -- see ERB.new) %% replaced with % if first thing on a line and % processing is used <%% or %%> -- replace with <% or %> respectively
All other text is passed through ERB
filtering unchanged.
There are several settings you can change when you use ERB:
the nature of the tags that are recognized;
the value of $SAFE
under which the template is run;
the binding used to resolve local variables in the template.
See the ERB.new
and ERB#result
methods for more detail.
ERB
(or Ruby code generated by ERB
) returns a string in the same character encoding as the input string. When the input string has a magic comment, however, it returns a string in the encoding specified by the magic comment.
# -*- coding: utf-8 -*- require 'erb' template = ERB.new <<EOF <%#-*- coding: Big5 -*-%> \_\_ENCODING\_\_ is <%= \_\_ENCODING\_\_ %>. EOF puts template.result
Prints: _ENCODING_ is Big5.
ERB
is useful for any generic templating situation. Note that in this example, we use the convenient “% at start of line” tag, and we quote the template literally with %q{...}
to avoid trouble with the backslash.
require "erb" # Create template. template = %q{ From: James Edward Gray II <james@grayproductions.net> To: <%= to %> Subject: Addressing Needs <%= to[/\w+/] %>: Just wanted to send a quick note assuring that your needs are being addressed. I want you to know that my team will keep working on the issues, especially: <%# ignore numerous minor requests -- focus on priorities %> % priorities.each do |priority| * <%= priority %> % end Thanks for your patience. James Edward Gray II }.gsub(/^ /, '') message = ERB.new(template, trim_mode: "%<>") # Set up template data. to = "Community Spokesman <spokesman@ruby_community.org>" priorities = [ "Run Ruby Quiz", "Document Modules", "Answer Questions on Ruby Talk" ] # Produce result. email = message.result puts email
Generates:
From: James Edward Gray II <james@grayproductions.net> To: Community Spokesman <spokesman@ruby_community.org> Subject: Addressing Needs Community: Just wanted to send a quick note assuring that your needs are being addressed. I want you to know that my team will keep working on the issues, especially: * Run Ruby Quiz * Document Modules * Answer Questions on Ruby Talk Thanks for your patience. James Edward Gray II
ERB
is often used in .rhtml
files (HTML with embedded Ruby). Notice the need in this example to provide a special binding when the template is run, so that the instance variables in the Product object can be resolved.
require "erb" # Build template data class. class Product def initialize( code, name, desc, cost ) @code = code @name = name @desc = desc @cost = cost @features = [ ] end def add_feature( feature ) @features << feature end # Support templating of member data. def get_binding binding end # ... end # Create template. template = %{ <html> <head><title>Ruby Toys -- <%= @name %></title></head> <body> <h1><%= @name %> (<%= @code %>)</h1> <p><%= @desc %></p> <ul> <% @features.each do |f| %> <li><b><%= f %></b></li> <% end %> </ul> <p> <% if @cost < 10 %> <b>Only <%= @cost %>!!!</b> <% else %> Call for a price, today! <% end %> </p> </body> </html> }.gsub(/^ /, '') rhtml = ERB.new(template) # Set up template data. toy = Product.new( "TZ-1002", "Rubysapien", "Geek's Best Friend! Responds to Ruby commands...", 999.95 ) toy.add_feature("Listens for verbal commands in the Ruby language!") toy.add_feature("Ignores Perl, Java, and all C variants.") toy.add_feature("Karate-Chop Action!!!") toy.add_feature("Matz signature on left leg.") toy.add_feature("Gem studded eyes... Rubies, of course!") # Produce result. rhtml.run(toy.get_binding)
Generates (some blank lines removed):
<html> <head><title>Ruby Toys -- Rubysapien</title></head> <body> <h1>Rubysapien (TZ-1002)</h1> <p>Geek's Best Friend! Responds to Ruby commands...</p> <ul> <li><b>Listens for verbal commands in the Ruby language!</b></li> <li><b>Ignores Perl, Java, and all C variants.</b></li> <li><b>Karate-Chop Action!!!</b></li> <li><b>Matz signature on left leg.</b></li> <li><b>Gem studded eyes... Rubies, of course!</b></li> </ul> <p> Call for a price, today! </p> </body> </html>
There are a variety of templating solutions available in various Ruby projects:
ERB’s big brother, eRuby, works the same but is written in C for speed;
Amrita (smart at producing HTML/XML);
cs/Template (written in C for speed);
RDoc
, distributed with Ruby, uses its own template engine, which can be reused elsewhere;
and others; search RubyGems.org or The Ruby Toolbox.
Rails, the web application framework, uses ERB
to create views.
IPAddr
provides a set of methods to manipulate an IP address. Both IPv4 and IPv6 are supported.
require 'ipaddr' ipaddr1 = IPAddr.new "3ffe:505:2::1" p ipaddr1 #=> #<IPAddr: IPv6:3ffe:0505:0002:0000:0000:0000:0000:0001/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff> p ipaddr1.to_s #=> "3ffe:505:2::1" ipaddr2 = ipaddr1.mask(48) #=> #<IPAddr: IPv6:3ffe:0505:0002:0000:0000:0000:0000:0000/ffff:ffff:ffff:0000:0000:0000:0000:0000> p ipaddr2.to_s #=> "3ffe:505:2::" ipaddr3 = IPAddr.new "192.168.2.0/24" p ipaddr3 #=> #<IPAddr: IPv4:192.168.2.0/255.255.255.0>
The Logger
class provides a simple but sophisticated logging utility that you can use to output messages.
The messages have associated levels, such as INFO
or ERROR
that indicate their importance. You can then give the Logger
a level, and only messages at that level or higher will be printed.
The levels are:
UNKNOWN
An unknown message that should always be logged.
FATAL
An unhandleable error that results in a program crash.
ERROR
A handleable error condition.
WARN
A warning.
INFO
Generic (useful) information about system operation.
DEBUG
Low-level information for developers.
For instance, in a production system, you may have your Logger
set to INFO
or even WARN
. When you are developing the system, however, you probably want to know about the program’s internal state, and would set the Logger
to DEBUG
.
Note: Logger
does not escape or sanitize any messages passed to it. Developers should be aware of when potentially malicious data (user-input) is passed to Logger
, and manually escape the untrusted data:
logger.info("User-input: #{input.dump}") logger.info("User-input: %p" % input)
You can use formatter=
for escaping all data.
original_formatter = Logger::Formatter.new logger.formatter = proc { |severity, datetime, progname, msg| original_formatter.call(severity, datetime, progname, msg.dump) } logger.info(input)
This creates a Logger
that outputs to the standard output stream, with a level of WARN
:
require 'logger' logger = Logger.new(STDOUT) logger.level = Logger::WARN logger.debug("Created logger") logger.info("Program started") logger.warn("Nothing to do!") path = "a_non_existent_file" begin File.foreach(path) do |line| unless line =~ /^(\w+) = (.*)$/ logger.error("Line in wrong format: #{line.chomp}") end end rescue => err logger.fatal("Caught exception; exiting") logger.fatal(err) end
Because the Logger’s level is set to WARN
, only the warning, error, and fatal messages are recorded. The debug and info messages are silently discarded.
There are several interesting features that Logger
provides, like auto-rolling of log files, setting the format of log messages, and specifying a program name in conjunction with the message. The next section shows you how to achieve these things.
The options below give you various choices, in more or less increasing complexity.
Create a logger which logs messages to STDERR/STDOUT.
logger = Logger.new(STDERR) logger = Logger.new(STDOUT)
Create a logger for the file which has the specified name.
logger = Logger.new('logfile.log')
Create a logger for the specified file.
file = File.open('foo.log', File::WRONLY | File::APPEND) # To create new logfile, add File::CREAT like: # file = File.open('foo.log', File::WRONLY | File::APPEND | File::CREAT) logger = Logger.new(file)
Create a logger which ages the logfile once it reaches a certain size. Leave 10 “old” log files where each file is about 1,024,000 bytes.
logger = Logger.new('foo.log', 10, 1024000)
Create a logger which ages the logfile daily/weekly/monthly.
logger = Logger.new('foo.log', 'daily') logger = Logger.new('foo.log', 'weekly') logger = Logger.new('foo.log', 'monthly')
Notice the different methods (fatal
, error
, info
) being used to log messages of various levels? Other methods in this family are warn
and debug
. add
is used below to log a message of an arbitrary (perhaps dynamic) level.
Message in a block.
logger.fatal { "Argument 'foo' not given." }
Message as a string.
logger.error "Argument #{@foo} mismatch."
With progname.
logger.info('initialize') { "Initializing..." }
With severity.
logger.add(Logger::FATAL) { 'Fatal error!' }
The block form allows you to create potentially complex log messages, but to delay their evaluation until and unless the message is logged. For example, if we have the following:
logger.debug { "This is a " + potentially + " expensive operation" }
If the logger’s level is INFO
or higher, no debug messages will be logged, and the entire block will not even be evaluated. Compare to this:
logger.debug("This is a " + potentially + " expensive operation")
Here, the string concatenation is done every time, even if the log level is not set to show the debug message.
logger.close
Original interface.
logger.sev_threshold = Logger::WARN
Log4r (somewhat) compatible interface.
logger.level = Logger::INFO # DEBUG < INFO < WARN < ERROR < FATAL < UNKNOWN
Symbol
or String
(case insensitive)
logger.level = :info logger.level = 'INFO' # :debug < :info < :warn < :error < :fatal < :unknown
Constructor
Logger.new(logdev, level: Logger::INFO) Logger.new(logdev, level: :info) Logger.new(logdev, level: 'INFO')
Log messages are rendered in the output stream in a certain format by default. The default format and a sample are shown below:
Log format:
SeverityID, [DateTime #pid] SeverityLabel -- ProgName: message
Log sample:
I, [1999-03-03T02:34:24.895701 #19074] INFO -- Main: info.
You may change the date and time format via datetime_format=
.
logger.datetime_format = '%Y-%m-%d %H:%M:%S' # e.g. "2004-01-03 00:54:26"
or via the constructor.
Logger.new(logdev, datetime_format: '%Y-%m-%d %H:%M:%S')
Or, you may change the overall format via the formatter=
method.
logger.formatter = proc do |severity, datetime, progname, msg| "#{datetime}: #{msg}\n" end # e.g. "2005-09-22 08:51:08 +0900: hello world"
or via the constructor.
Logger.new(logdev, formatter: proc {|severity, datetime, progname, msg| "#{datetime}: #{msg}\n" })
Use the Monitor
class when you want to have a lock object for blocks with mutual exclusion.
require 'monitor' lock = Monitor.new lock.synchronize do # exclusive access end