Set
local variable named symbol
as obj
.
def foo a = 1 bind = binding bind.local_variable_set(:a, 2) # set existing local variable `a' bind.local_variable_set(:b, 3) # create new local variable `b' # `b' exists only in binding p bind.local_variable_get(:a) #=> 2 p bind.local_variable_get(:b) #=> 3 p a #=> 2 p b #=> NameError end
This method behaves similarly to the following code:
binding.eval("#{symbol} = #{obj}")
if obj
can be dumped in Ruby code.
Returns true
if a local variable symbol
exists.
def foo a = 1 binding.local_variable_defined?(:a) #=> true binding.local_variable_defined?(:b) #=> false end
This method is the short version of the following code:
binding.eval("defined?(#{symbol}) == 'local-variable'")
Breaks the buffer into lines that are shorter than maxwidth
Returns the directories in the current shell’s PATH environment variable as an array of directory names. This sets the system_path
for all instances of Shell
.
Example: If in your current shell, you did:
$ echo $PATH /usr/bin:/bin:/usr/local/bin
Running this method in the above shell would then return:
["/usr/bin", "/bin", "/usr/local/bin"]
Sets the system_path
that new instances of Shell
should have as their initial system_path.
path
should be an array of directory name strings.
Returns the value of a thread local variable that has been set. Note that these are different than fiber local values. For fiber local values, please see Thread#[]
and Thread#[]=
.
Thread
local values are carried along with threads, and do not respect fibers. For example:
Thread.new { Thread.current.thread_variable_set("foo", "bar") # set a thread local Thread.current["foo"] = "bar" # set a fiber local Fiber.new { Fiber.yield [ Thread.current.thread_variable_get("foo"), # get the thread local Thread.current["foo"], # get the fiber local ] }.resume }.join.value # => ['bar', nil]
The value “bar” is returned for the thread local, where nil is returned for the fiber local. The fiber is executed in the same thread, so the thread local values are available.
Sets a thread local with key
to value
. Note that these are local to threads, and not to fibers. Please see Thread#thread_variable_get
and Thread#[]
for more information.
For debugging the Ruby/OpenSSL library. Calls CRYPTO_mem_leaks_fp(stderr). Prints detected memory leaks to standard error. This cleans the global state up thus you cannot use any methods of the library after calling this.
Returns true
if leaks detected, false
otherwise.
This is available only when built with a capable OpenSSL
and –enable-debug configure option.
OpenSSL.mem_check_start NOT_GCED = OpenSSL::PKey::RSA.new(256) END { GC.start OpenSSL.print_mem_leaks # will print the leakage }
Returns a list of paths matching glob
from the latest gems that can be used by a gem to pick up features from other gems. For example:
Gem.find_latest_files('rdoc/discover').each do |path| load path end
if check_load_path
is true (the default), then find_latest_files
also searches $LOAD_PATH for files as well as gems.
Unlike find_files
, find_latest_files
will return only files from the latest version of a gem.
Register a Gem::Specification
for default gem.
Two formats for the specification are supported:
MRI 2.0 style, where spec.files contains unprefixed require names. The spec’s filenames will be registered as-is.
New style, where spec.files contains files prefixed with paths from spec.require_paths. The prefixes are stripped before registering the spec’s filenames. Unprefixed files are omitted.
Paths where RubyGems’ .rb files and bin files are installed
Deduce Ruby’s –program-prefix and –program-suffix from its install name
The default signing key path
The default signing certificate chain path
This method removes a file system entry path
. path
shall be a regular file, a directory, or something. If path
is a directory, remove it recursively. This method is required to avoid TOCTTOU (time-of-check-to-time-of-use) local security vulnerability of rm_r
. rm_r
causes security hole when:
Parent directory is world writable (including /tmp).
Removing directory tree includes world writable directory.
The system has symbolic link.
To avoid this security hole, this method applies special preprocess. If path
is a directory, this method chown(2) and chmod(2) all removing directories. This requires the current process is the owner of the removing whole directory tree, or is the super user (root).
WARNING: You must ensure that ALL parent directories cannot be moved by other untrusted users. For example, parent directories should not be owned by untrusted users, and should not be world writable except when the sticky bit set.
WARNING: Only the owner of the removing directory tree, or Unix super user (root) should invoke this method. Otherwise this method does not work.
For details of this security vulnerability, see Perl’s case:
For fileutils.rb, this vulnerability is reported in [ruby-dev:26100].
This method removes a file system entry path
. path
shall be a regular file, a directory, or something. If path
is a directory, remove it recursively. This method is required to avoid TOCTTOU (time-of-check-to-time-of-use) local security vulnerability of rm_r
. rm_r
causes security hole when:
Parent directory is world writable (including /tmp).
Removing directory tree includes world writable directory.
The system has symbolic link.
To avoid this security hole, this method applies special preprocess. If path
is a directory, this method chown(2) and chmod(2) all removing directories. This requires the current process is the owner of the removing whole directory tree, or is the super user (root).
WARNING: You must ensure that ALL parent directories cannot be moved by other untrusted users. For example, parent directories should not be owned by untrusted users, and should not be world writable except when the sticky bit set.
WARNING: Only the owner of the removing directory tree, or Unix super user (root) should invoke this method. Otherwise this method does not work.
For details of this security vulnerability, see Perl’s case:
For fileutils.rb, this vulnerability is reported in [ruby-dev:26100].
Decodes URL-encoded form data from given str
.
This decodes application/x-www-form-urlencoded data and returns an array of key-value arrays.
This refers url.spec.whatwg.org/#concept-urlencoded-parser, so this supports only &-separator, and doesn’t support ;-separator.
ary = URI.decode_www_form("a=1&a=2&b=3") ary #=> [['a', '1'], ['a', '2'], ['b', '3']] ary.assoc('a').last #=> '1' ary.assoc('b').last #=> '3' ary.rassoc('a').last #=> '2' Hash[ary] #=> {"a"=>"2", "b"=>"3"}
Should be implemented by a extended class.
tsort_each_node
is used to iterate for all nodes over a graph.
Attempts to activate the current {#possibility} (given that it has already been activated) @return [void]
Attempts to activate the current {#possibility} @return [void]
Returns the cofactor of the group.
See the OpenSSL
documentation for EC_GROUP_get_cofactor()