Results for: "partition"

A VendorSpecification represents a gem that has been unpacked into a project and is being loaded through a gem dependencies file through the path: option.

Gem::Security default exception type

An object representation of a stack frame, initialized by Kernel#caller_locations.

For example:

# caller_locations.rb
def a(skip)
  caller_locations(skip)
end
def b(skip)
  a(skip)
end
def c(skip)
  b(skip)
end

c(0..2).map do |call|
  puts call.to_s
end

Running ruby caller_locations.rb will produce:

caller_locations.rb:2:in `a'
caller_locations.rb:5:in `b'
caller_locations.rb:8:in `c'

Here’s another example with a slightly different result:

# foo.rb
class Foo
  attr_accessor :locations
  def initialize(skip)
    @locations = caller_locations(skip)
  end
end

Foo.new(0..2).locations.map do |call|
  puts call.to_s
end

Now run ruby foo.rb and you should see:

init.rb:4:in `initialize'
init.rb:8:in `new'
init.rb:8:in `<main>'
No documentation available

Implementation of an X.509 certificate as specified in RFC 5280. Provides access to a certificate’s attributes and allows certificates to be read from a string, but also supports the creation of new certificates from scratch.

Reading a certificate from a file

Certificate is capable of handling DER-encoded certificates and certificates encoded in OpenSSL’s PEM format.

raw = File.read "cert.cer" # DER- or PEM-encoded
certificate = OpenSSL::X509::Certificate.new raw

Saving a certificate to a file

A certificate may be encoded in DER format

cert = ...
File.open("cert.cer", "wb") { |f| f.print cert.to_der }

or in PEM format

cert = ...
File.open("cert.pem", "wb") { |f| f.print cert.to_pem }

X.509 certificates are associated with a private/public key pair, typically a RSA, DSA or ECC key (see also OpenSSL::PKey::RSA, OpenSSL::PKey::DSA and OpenSSL::PKey::EC), the public key itself is stored within the certificate and can be accessed in form of an OpenSSL::PKey. Certificates are typically used to be able to associate some form of identity with a key pair, for example web servers serving pages over HTTPs use certificates to authenticate themselves to the user.

The public key infrastructure (PKI) model relies on trusted certificate authorities (“root CAs”) that issue these certificates, so that end users need to base their trust just on a selected few authorities that themselves again vouch for subordinate CAs issuing their certificates to end users.

The OpenSSL::X509 module provides the tools to set up an independent PKI, similar to scenarios where the ‘openssl’ command line tool is used for issuing certificates in a private PKI.

Creating a root CA certificate and an end-entity certificate

First, we need to create a “self-signed” root certificate. To do so, we need to generate a key first. Please note that the choice of “1” as a serial number is considered a security flaw for real certificates. Secure choices are integers in the two-digit byte range and ideally not sequential but secure random numbers, steps omitted here to keep the example concise.

root_key = OpenSSL::PKey::RSA.new 2048 # the CA's public/private key
root_ca = OpenSSL::X509::Certificate.new
root_ca.version = 2 # cf. RFC 5280 - to make it a "v3" certificate
root_ca.serial = 1
root_ca.subject = OpenSSL::X509::Name.parse "/DC=org/DC=ruby-lang/CN=Ruby CA"
root_ca.issuer = root_ca.subject # root CA's are "self-signed"
root_ca.public_key = root_key.public_key
root_ca.not_before = Time.now
root_ca.not_after = root_ca.not_before + 2 * 365 * 24 * 60 * 60 # 2 years validity
ef = OpenSSL::X509::ExtensionFactory.new
ef.subject_certificate = root_ca
ef.issuer_certificate = root_ca
root_ca.add_extension(ef.create_extension("basicConstraints","CA:TRUE",true))
root_ca.add_extension(ef.create_extension("keyUsage","keyCertSign, cRLSign", true))
root_ca.add_extension(ef.create_extension("subjectKeyIdentifier","hash",false))
root_ca.add_extension(ef.create_extension("authorityKeyIdentifier","keyid:always",false))
root_ca.sign(root_key, OpenSSL::Digest::SHA256.new)

The next step is to create the end-entity certificate using the root CA certificate.

key = OpenSSL::PKey::RSA.new 2048
cert = OpenSSL::X509::Certificate.new
cert.version = 2
cert.serial = 2
cert.subject = OpenSSL::X509::Name.parse "/DC=org/DC=ruby-lang/CN=Ruby certificate"
cert.issuer = root_ca.subject # root CA is the issuer
cert.public_key = key.public_key
cert.not_before = Time.now
cert.not_after = cert.not_before + 1 * 365 * 24 * 60 * 60 # 1 years validity
ef = OpenSSL::X509::ExtensionFactory.new
ef.subject_certificate = cert
ef.issuer_certificate = root_ca
cert.add_extension(ef.create_extension("keyUsage","digitalSignature", true))
cert.add_extension(ef.create_extension("subjectKeyIdentifier","hash",false))
cert.sign(root_key, OpenSSL::Digest::SHA256.new)

The parent class for all primitive encodings. Attributes are the same as for ASN1Data, with the addition of tagging. Primitive values can never be encoded with indefinite length form, thus it is not possible to set the indefinite_length attribute for Primitive and its sub-classes.

Primitive sub-classes and their mapping to Ruby classes

OpenSSL::ASN1::BitString

Additional attributes

unused_bits: if the underlying BIT STRING’s length is a multiple of 8 then unused_bits is 0. Otherwise unused_bits indicates the number of bits that are to be ignored in the final octet of the BitString’s value.

OpenSSL::ASN1::ObjectId

NOTE: While OpenSSL::ASN1::ObjectId.new will allocate a new ObjectId, it is not typically allocated this way, but rather that are received from parsed ASN1 encodings.

Additional attributes

Examples

With the Exception of OpenSSL::ASN1::EndOfContent, each Primitive class constructor takes at least one parameter, the value.

Creating EndOfContent

eoc = OpenSSL::ASN1::EndOfContent.new

Creating any other Primitive

prim = <class>.new(value) # <class> being one of the sub-classes except EndOfContent
prim_zero_tagged_implicit = <class>.new(value, 0, :IMPLICIT)
prim_zero_tagged_explicit = <class>.new(value, 0, :EXPLICIT)

The parent class for all constructed encodings. The value attribute of a Constructive is always an Array. Attributes are the same as for ASN1Data, with the addition of tagging.

SET and SEQUENCE

Most constructed encodings come in the form of a SET or a SEQUENCE. These encodings are represented by one of the two sub-classes of Constructive:

Please note that tagged sequences and sets are still parsed as instances of ASN1Data. Find further details on tagged values there.

Example - constructing a SEQUENCE

int = OpenSSL::ASN1::Integer.new(1)
str = OpenSSL::ASN1::PrintableString.new('abc')
sequence = OpenSSL::ASN1::Sequence.new( [ int, str ] )

Example - constructing a SET

int = OpenSSL::ASN1::Integer.new(1)
str = OpenSSL::ASN1::PrintableString.new('abc')
set = OpenSSL::ASN1::Set.new( [ int, str ] )

An OpenSSL::OCSP::CertificateId identifies a certificate to the CA so that a status check can be performed.

No documentation available
No documentation available

Error raised when a response from the server is non-parseable.

No documentation available

The Transitive formatter writes an XML document that parses to an identical document as the source document. This means that no extra whitespace nodes are inserted, and whitespace within text nodes is preserved. Within these constraints, the document is pretty-printed, with whitespace inserted into the metadata to introduce formatting.

Note that this is only useful if the original XML is not already formatted. Since this formatter does not alter whitespace nodes, the results of formatting already formatted XML will be odd.

You don’t want to use this class. Really. Use XPath, which is a wrapper for this class. Believe me. You don’t want to poke around in here. There is strange, dark magic at work in this code. Beware. Go back! Go back while you still can!

IO wrapper that creates digests of contents written to the IO it wraps.

WIN32OLE_VARIABLE objects represent OLE variable information.

WIN32OLE_VARIANT objects represents OLE variant.

Win32OLE converts Ruby object into OLE variant automatically when invoking OLE methods. If OLE method requires the argument which is different from the variant by automatic conversion of Win32OLE, you can convert the specfied variant type by using WIN32OLE_VARIANT class.

param = WIN32OLE_VARIANT.new(10, WIN32OLE::VARIANT::VT_R4)
oleobj.method(param)

WIN32OLE_VARIANT does not support VT_RECORD variant. Use WIN32OLE_RECORD class instead of WIN32OLE_VARIANT if the VT_RECORD variant is needed.

This is the JSON parser implemented as a C extension. It can be configured to be used by setting

JSON.parser = JSON::Ext::Parser

with the method parser= in JSON.

No documentation available
No documentation available

Represents the primitive object id for OpenSSL::ASN1

No documentation available
No documentation available
No documentation available
No documentation available
Search took: 8ms  ·  Total Results: 3090