Class

Arrays are ordered, integer-indexed collections of any object.

Array indexing starts at 0, as in C or Java. A negative index is assumed to be relative to the end of the array—that is, an index of -1 indicates the last element of the array, -2 is the next to last element in the array, and so on.

Creating Arrays

A new array can be created by using the literal constructor []. Arrays can contain different types of objects. For example, the array below contains an Integer, a String and a Float:

ary = [1, "two", 3.0] #=> [1, "two", 3.0]

An array can also be created by explicitly calling Array.new with zero, one (the initial size of the Array) or two arguments (the initial size and a default object).

ary = Array.new    #=> []
Array.new(3)       #=> [nil, nil, nil]
Array.new(3, true) #=> [true, true, true]

Note that the second argument populates the array with references to the same object. Therefore, it is only recommended in cases when you need to instantiate arrays with natively immutable objects such as Symbols, numbers, true or false.

To create an array with separate objects a block can be passed instead. This method is safe to use with mutable objects such as hashes, strings or other arrays:

Array.new(4) { Hash.new }  #=> [{}, {}, {}, {}]
Array.new(4) {|i| i.to_s } #=> ["0", "1", "2", "3"]

This is also a quick way to build up multi-dimensional arrays:

empty_table = Array.new(3) { Array.new(3) }
#=> [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]]

An array can also be created by using the Array() method, provided by Kernel, which tries to call to_ary, then to_a on its argument.

Array({:a => "a", :b => "b"}) #=> [[:a, "a"], [:b, "b"]]

Example Usage

In addition to the methods it mixes in through the Enumerable module, the Array class has proprietary methods for accessing, searching and otherwise manipulating arrays.

Some of the more common ones are illustrated below.

Accessing Elements

Elements in an array can be retrieved using the Array#[] method. It can take a single integer argument (a numeric index), a pair of arguments (start and length) or a range. Negative indices start counting from the end, with -1 being the last element.

arr = [1, 2, 3, 4, 5, 6]
arr[2]    #=> 3
arr[100]  #=> nil
arr[-3]   #=> 4
arr[2, 3] #=> [3, 4, 5]
arr[1..4] #=> [2, 3, 4, 5]
arr[1..-3] #=> [2, 3, 4]

Another way to access a particular array element is by using the at method

arr.at(0) #=> 1

The slice method works in an identical manner to Array#[].

To raise an error for indices outside of the array bounds or else to provide a default value when that happens, you can use fetch.

arr = ['a', 'b', 'c', 'd', 'e', 'f']
arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6
arr.fetch(100, "oops") #=> "oops"

The special methods first and last will return the first and last elements of an array, respectively.

arr.first #=> 1
arr.last  #=> 6

To return the first n elements of an array, use take

arr.take(3) #=> [1, 2, 3]

drop does the opposite of take, by returning the elements after n elements have been dropped:

arr.drop(3) #=> [4, 5, 6]

Obtaining Information about an Array

Arrays keep track of their own length at all times. To query an array about the number of elements it contains, use length, count or size.

browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE']
browsers.length #=> 5
browsers.count #=> 5

To check whether an array contains any elements at all

browsers.empty? #=> false

To check whether a particular item is included in the array

browsers.include?('Konqueror') #=> false

Adding Items to Arrays

Items can be added to the end of an array by using either push or <<

arr = [1, 2, 3, 4]
arr.push(5) #=> [1, 2, 3, 4, 5]
arr << 6    #=> [1, 2, 3, 4, 5, 6]

unshift will add a new item to the beginning of an array.

arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6]

With insert you can add a new element to an array at any position.

arr.insert(3, 'apple')  #=> [0, 1, 2, 'apple', 3, 4, 5, 6]

Using the insert method, you can also insert multiple values at once:

arr.insert(3, 'orange', 'pear', 'grapefruit')
#=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6]

Removing Items from an Array

The method pop removes the last element in an array and returns it:

arr =  [1, 2, 3, 4, 5, 6]
arr.pop #=> 6
arr #=> [1, 2, 3, 4, 5]

To retrieve and at the same time remove the first item, use shift:

arr.shift #=> 1
arr #=> [2, 3, 4, 5]

To delete an element at a particular index:

arr.delete_at(2) #=> 4
arr #=> [2, 3, 5]

To delete a particular element anywhere in an array, use delete:

arr = [1, 2, 2, 3]
arr.delete(2) #=> 2
arr #=> [1,3]

A useful method if you need to remove nil values from an array is compact:

arr = ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact  #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact! #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, 'bar', 7, 'baz']

Another common need is to remove duplicate elements from an array.

It has the non-destructive uniq, and destructive method uniq!

arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556]
arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123]

Iterating over Arrays

Like all classes that include the Enumerable module, Array has an each method, which defines what elements should be iterated over and how. In case of Array’s each, all elements in the Array instance are yielded to the supplied block in sequence.

Note that this operation leaves the array unchanged.

arr = [1, 2, 3, 4, 5]
arr.each { |a| print a -= 10, " " }
# prints: -9 -8 -7 -6 -5
#=> [1, 2, 3, 4, 5]

Another sometimes useful iterator is reverse_each which will iterate over the elements in the array in reverse order.

words = %w[first second third fourth fifth sixth]
str = ""
words.reverse_each { |word| str += "#{word} " }
p str #=> "sixth fifth fourth third second first "

The map method can be used to create a new array based on the original array, but with the values modified by the supplied block:

arr.map { |a| 2*a }   #=> [2, 4, 6, 8, 10]
arr                   #=> [1, 2, 3, 4, 5]
arr.map! { |a| a**2 } #=> [1, 4, 9, 16, 25]
arr                   #=> [1, 4, 9, 16, 25]

Selecting Items from an Array

Elements can be selected from an array according to criteria defined in a block. The selection can happen in a destructive or a non-destructive manner. While the destructive operations will modify the array they were called on, the non-destructive methods usually return a new array with the selected elements, but leave the original array unchanged.

Non-destructive Selection

arr = [1, 2, 3, 4, 5, 6]
arr.select { |a| a > 3 }     #=> [4, 5, 6]
arr.reject { |a| a < 3 }     #=> [3, 4, 5, 6]
arr.drop_while { |a| a < 4 } #=> [4, 5, 6]
arr                          #=> [1, 2, 3, 4, 5, 6]

Destructive Selection

select! and reject! are the corresponding destructive methods to select and reject

Similar to select vs. reject, delete_if and keep_if have the exact opposite result when supplied with the same block:

arr.delete_if { |a| a < 4 } #=> [4, 5, 6]
arr                         #=> [4, 5, 6]

arr = [1, 2, 3, 4, 5, 6]
arr.keep_if { |a| a < 4 } #=> [1, 2, 3]
arr                       #=> [1, 2, 3]
Class Methods

Returns a new array populated with the given objects.

Array.[]( 1, 'a', /^A/ ) # => [1, "a", /^A/]
Array[ 1, 'a', /^A/ ]    # => [1, "a", /^A/]
[ 1, 'a', /^A/ ]         # => [1, "a", /^A/]

Returns a new array.

In the first form, if no arguments are sent, the new array will be empty. When a size and an optional default are sent, an array is created with size copies of default. Take notice that all elements will reference the same object default.

The second form creates a copy of the array passed as a parameter (the array is generated by calling to_ary on the parameter).

first_array = ["Matz", "Guido"]

second_array = Array.new(first_array) #=> ["Matz", "Guido"]

first_array.equal? second_array       #=> false

In the last form, an array of the given size is created. Each element in this array is created by passing the element’s index to the given block and storing the return value.

Array.new(3){ |index| index ** 2 }
# => [0, 1, 4]

Common gotchas

When sending the second parameter, the same object will be used as the value for all the array elements:

a = Array.new(2, Hash.new)
# => [{}, {}]

a[0]['cat'] = 'feline'
a # => [{"cat"=>"feline"}, {"cat"=>"feline"}]

a[1]['cat'] = 'Felix'
a # => [{"cat"=>"Felix"}, {"cat"=>"Felix"}]

Since all the Array elements store the same hash, changes to one of them will affect them all.

If multiple copies are what you want, you should use the block version which uses the result of that block each time an element of the array needs to be initialized:

a = Array.new(2) { Hash.new }
a[0]['cat'] = 'feline'
a # => [{"cat"=>"feline"}, {}]

Tries to convert obj into an array, using to_ary method. Returns the converted array or nil if obj cannot be converted for any reason. This method can be used to check if an argument is an array.

Array.try_convert([1])   #=> [1]
Array.try_convert("1")   #=> nil

if tmp = Array.try_convert(arg)
  # the argument is an array
elsif tmp = String.try_convert(arg)
  # the argument is a string
end
Instance Methods

Set Intersection — Returns a new array containing unique elements common to the two arrays. The order is preserved from the original array.

It compares elements using their hash and eql? methods for efficiency.

[ 1, 1, 3, 5 ] & [ 3, 2, 1 ]                 #=> [ 1, 3 ]
[ 'a', 'b', 'b', 'z' ] & [ 'a', 'b', 'c' ]   #=> [ 'a', 'b' ]

See also Array#uniq.

Repetition — With a String argument, equivalent to ary.join(str).

Otherwise, returns a new array built by concatenating the int copies of self.

[ 1, 2, 3 ] * 3    #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ]
[ 1, 2, 3 ] * ","  #=> "1,2,3"

Concatenation — Returns a new array built by concatenating the two arrays together to produce a third array.

[ 1, 2, 3 ] + [ 4, 5 ]    #=> [ 1, 2, 3, 4, 5 ]
a = [ "a", "b", "c" ]
c = a + [ "d", "e", "f" ]
c                         #=> [ "a", "b", "c", "d", "e", "f" ]
a                         #=> [ "a", "b", "c" ]

Note that

x += y

is the same as

x = x + y

This means that it produces a new array. As a consequence, repeated use of += on arrays can be quite inefficient.

See also Array#concat.

Array Difference

Returns a new array that is a copy of the original array, removing any items that also appear in other_ary. The order is preserved from the original array.

It compares elements using their hash and eql? methods for efficiency.

[ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ]  #=>  [ 3, 3, 5 ]

If you need set-like behavior, see the library class Set.

Append—Pushes the given object on to the end of this array. This expression returns the array itself, so several appends may be chained together.

a = [ 1, 2 ]
a << "c" << "d" << [ 3, 4 ]
        #=>  [ 1, 2, "c", "d", [ 3, 4 ] ]
a
        #=>  [ 1, 2, "c", "d", [ 3, 4 ] ]

Comparison — Returns an integer (-1, 0, or +1) if this array is less than, equal to, or greater than other_ary.

Each object in each array is compared (using the <=> operator).

Arrays are compared in an “element-wise” manner; the first element of ary is compared with the first one of other_ary using the <=> operator, then each of the second elements, etc… As soon as the result of any such comparison is non zero (i.e. the two corresponding elements are not equal), that result is returned for the whole array comparison.

If all the elements are equal, then the result is based on a comparison of the array lengths. Thus, two arrays are “equal” according to Array#<=> if, and only if, they have the same length and the value of each element is equal to the value of the corresponding element in the other array.

nil is returned if the other_ary is not an array or if the comparison of two elements returned nil.

[ "a", "a", "c" ]    <=> [ "a", "b", "c" ]   #=> -1
[ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ]            #=> +1
[ 1, 2 ]             <=> [ 1, :two ]         #=> nil

Equality — Two arrays are equal if they contain the same number of elements and if each element is equal to (according to Object#==) the corresponding element in other_ary.

[ "a", "c" ]    == [ "a", "c", 7 ]     #=> false
[ "a", "c", 7 ] == [ "a", "c", 7 ]     #=> true
[ "a", "c", 7 ] == [ "a", "d", "f" ]   #=> false

Element Reference — Returns the element at index, or returns a subarray starting at the start index and continuing for length elements, or returns a subarray specified by range of indices.

Negative indices count backward from the end of the array (-1 is the last element). For start and range cases the starting index is just before an element. Additionally, an empty array is returned when the starting index for an element range is at the end of the array.

Returns nil if the index (or starting index) are out of range.

a = [ "a", "b", "c", "d", "e" ]
a[2] +  a[0] + a[1]    #=> "cab"
a[6]                   #=> nil
a[1, 2]                #=> [ "b", "c" ]
a[1..3]                #=> [ "b", "c", "d" ]
a[4..7]                #=> [ "e" ]
a[6..10]               #=> nil
a[-3, 3]               #=> [ "c", "d", "e" ]
# special cases
a[5]                   #=> nil
a[6, 1]                #=> nil
a[5, 1]                #=> []
a[5..10]               #=> []

Element Assignment — Sets the element at index, or replaces a subarray from the start index for length elements, or replaces a subarray specified by the range of indices.

If indices are greater than the current capacity of the array, the array grows automatically. Elements are inserted into the array at start if length is zero.

Negative indices will count backward from the end of the array. For start and range cases the starting index is just before an element.

An IndexError is raised if a negative index points past the beginning of the array.

See also Array#push, and Array#unshift.

a = Array.new
a[4] = "4";                 #=> [nil, nil, nil, nil, "4"]
a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"]
a[1..2] = [ 1, 2 ]          #=> ["a", 1, 2, nil, "4"]
a[0, 2] = "?"               #=> ["?", 2, nil, "4"]
a[0..2] = "A"               #=> ["A", "4"]
a[-1]   = "Z"               #=> ["A", "Z"]
a[1..-1] = nil              #=> ["A", nil]
a[1..-1] = []               #=> ["A"]
a[0, 0] = [ 1, 2 ]          #=> [1, 2, "A"]
a[3, 0] = "B"               #=> [1, 2, "A", "B"]

Calculates the set of unambiguous abbreviations for the strings in self.

require 'abbrev'
%w{ car cone }.abbrev
#=> {"car"=>"car", "ca"=>"car", "cone"=>"cone", "con"=>"cone", "co"=>"cone"}

The optional pattern parameter is a pattern or a string. Only input strings that match the pattern or start with the string are included in the output hash.

%w{ fast boat day }.abbrev(/^.a/)
#=> {"fast"=>"fast", "fas"=>"fast", "fa"=>"fast", "day"=>"day", "da"=>"day"}

Abbrev.abbrev(%w{car box cone}, "ca")
#=> {"car"=>"car", "ca"=>"car"}

See also Abbrev.abbrev

See also Enumerable#any?

Searches through an array whose elements are also arrays comparing obj with the first element of each contained array using obj.==.

Returns the first contained array that matches (that is, the first associated array), or nil if no match is found.

See also Array#rassoc

s1 = [ "colors", "red", "blue", "green" ]
s2 = [ "letters", "a", "b", "c" ]
s3 = "foo"
a  = [ s1, s2, s3 ]
a.assoc("letters")  #=> [ "letters", "a", "b", "c" ]
a.assoc("foo")      #=> nil

Returns the element at index. A negative index counts from the end of self. Returns nil if the index is out of range. See also Array#[].

a = [ "a", "b", "c", "d", "e" ]
a.at(0)     #=> "a"
a.at(-1)    #=> "e"

By using binary search, finds a value from this array which meets the given condition in O(log n) where n is the size of the array.

You can use this method in two modes: a find-minimum mode and a find-any mode. In either case, the elements of the array must be monotone (or sorted) with respect to the block.

In find-minimum mode (this is a good choice for typical use cases), the block must always return true or false, and there must be an index i (0 <= i <= ary.size) so that:

  • the block returns false for any element whose index is less than i, and

  • the block returns true for any element whose index is greater than or equal to i.

This method returns the i-th element. If i is equal to ary.size, it returns nil.

ary = [0, 4, 7, 10, 12]
ary.bsearch {|x| x >=   4 } #=> 4
ary.bsearch {|x| x >=   6 } #=> 7
ary.bsearch {|x| x >=  -1 } #=> 0
ary.bsearch {|x| x >= 100 } #=> nil

In find-any mode (this behaves like libc’s bsearch(3)), the block must always return a number, and there must be two indices i and j (0 <= i <= j <= ary.size) so that:

  • the block returns a positive number for ary if 0 <= k < i,

  • the block returns zero for ary if i <= k < j, and

  • the block returns a negative number for ary if j <= k < ary.size.

Under this condition, this method returns any element whose index is within i…j. If i is equal to j (i.e., there is no element that satisfies the block), this method returns nil.

ary = [0, 4, 7, 10, 12]
# try to find v such that 4 <= v < 8
ary.bsearch {|x| 1 - x / 4 } #=> 4 or 7
# try to find v such that 8 <= v < 10
ary.bsearch {|x| 4 - x / 2 } #=> nil

You must not mix the two modes at a time; the block must always return either true/false, or always return a number. It is undefined which value is actually picked up at each iteration.

By using binary search, finds an index of a value from this array which meets the given condition in O(log n) where n is the size of the array.

It supports two modes, depending on the nature of the block. They are exactly the same as in the case of the bsearch method, with the only difference being that this method returns the index of the element instead of the element itself. For more details consult the documentation for bsearch.

Removes all elements from self.

a = [ "a", "b", "c", "d", "e" ]
a.clear    #=> [ ]

Invokes the given block once for each element of self.

Creates a new array containing the values returned by the block.

See also Enumerable#collect.

If no block is given, an Enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.collect { |x| x + "!" }         #=> ["a!", "b!", "c!", "d!"]
a.map.with_index { |x, i| x * i } #=> ["", "b", "cc", "ddd"]
a                                 #=> ["a", "b", "c", "d"]

Invokes the given block once for each element of self, replacing the element with the value returned by the block.

See also Enumerable#collect.

If no block is given, an Enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.map! {|x| x + "!" }
a #=>  [ "a!", "b!", "c!", "d!" ]
a.collect!.with_index {|x, i| x[0...i] }
a #=>  ["", "b", "c!", "d!"]

When invoked with a block, yields all combinations of length n of elements from the array and then returns the array itself.

The implementation makes no guarantees about the order in which the combinations are yielded.

If no block is given, an Enumerator is returned instead.

Examples:

a = [1, 2, 3, 4]
a.combination(1).to_a  #=> [[1],[2],[3],[4]]
a.combination(2).to_a  #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
a.combination(3).to_a  #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
a.combination(4).to_a  #=> [[1,2,3,4]]
a.combination(0).to_a  #=> [[]] # one combination of length 0
a.combination(5).to_a  #=> []   # no combinations of length 5

Returns a copy of self with all nil elements removed.

[ "a", nil, "b", nil, "c", nil ].compact
                  #=> [ "a", "b", "c" ]

Removes nil elements from the array.

Returns nil if no changes were made, otherwise returns the array.

[ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
[ "a", "b", "c" ].compact!           #=> nil

Appends the elements of +other_ary+s to self.

[ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
[ "a" ].concat( ["b"], ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
[ "a" ].concat #=> [ "a" ]

a = [ 1, 2, 3 ]
a.concat( [ 4, 5 ] )
a                                 #=> [ 1, 2, 3, 4, 5 ]

a = [ 1, 2 ]
a.concat(a, a)                    #=> [1, 2, 1, 2, 1, 2]

See also Array#+.

Returns the number of elements.

If an argument is given, counts the number of elements which equal obj using ==.

If a block is given, counts the number of elements for which the block returns a true value.

ary = [1, 2, 4, 2]
ary.count                  #=> 4
ary.count(2)               #=> 2
ary.count { |x| x%2 == 0 } #=> 3

Calls the given block for each element n times or forever if nil is given.

Does nothing if a non-positive number is given or the array is empty.

Returns nil if the loop has finished without getting interrupted.

If no block is given, an Enumerator is returned instead.

a = ["a", "b", "c"]
a.cycle { |x| puts x }     # print, a, b, c, a, b, c,.. forever.
a.cycle(2) { |x| puts x }  # print, a, b, c, a, b, c.

provides a unified clone operation, for REXML::XPathParser to use across multiple Object+ types

Deletes all items from self that are equal to obj.

Returns the last deleted item, or nil if no matching item is found.

If the optional code block is given, the result of the block is returned if the item is not found. (To remove nil elements and get an informative return value, use Array#compact!)

a = [ "a", "b", "b", "b", "c" ]
a.delete("b")                   #=> "b"
a                               #=> ["a", "c"]
a.delete("z")                   #=> nil
a.delete("z") { "not found" }   #=> "not found"

Deletes the element at the specified index, returning that element, or nil if the index is out of range.

See also Array#slice!

a = ["ant", "bat", "cat", "dog"]
a.delete_at(2)    #=> "cat"
a                 #=> ["ant", "bat", "dog"]
a.delete_at(99)   #=> nil

Deletes every element of self for which block evaluates to true.

The array is changed instantly every time the block is called, not after the iteration is over.

See also Array#reject!

If no block is given, an Enumerator is returned instead.

scores = [ 97, 42, 75 ]
scores.delete_if {|score| score < 80 }   #=> [97]

Extracts the nested value specified by the sequence of idx objects by calling dig at each step, returning nil if any intermediate step is nil.

a = [[1, [2, 3]]]

a.dig(0, 1, 1)                    #=> 3
a.dig(1, 2, 3)                    #=> nil
a.dig(0, 0, 0)                    #=> TypeError: Integer does not have #dig method
[42, {foo: :bar}].dig(1, :foo)    #=> :bar

Drops first n elements from ary and returns the rest of the elements in an array.

If a negative number is given, raises an ArgumentError.

See also Array#take

a = [1, 2, 3, 4, 5, 0]
a.drop(3)             #=> [4, 5, 0]

Drops elements up to, but not including, the first element for which the block returns nil or false and returns an array containing the remaining elements.

If no block is given, an Enumerator is returned instead.

See also Array#take_while

a = [1, 2, 3, 4, 5, 0]
a.drop_while {|i| i < 3 }   #=> [3, 4, 5, 0]

Calls the given block once for each element in self, passing that element as a parameter. Returns the array itself.

If no block is given, an Enumerator is returned.

a = [ "a", "b", "c" ]
a.each {|x| print x, " -- " }

produces:

a -- b -- c --

Same as Array#each, but passes the index of the element instead of the element itself.

An Enumerator is returned if no block is given.

a = [ "a", "b", "c" ]
a.each_index {|x| print x, " -- " }

produces:

0 -- 1 -- 2 --

Returns true if self contains no elements.

[].empty?   #=> true

Returns true if self and other are the same object, or are both arrays with the same content (according to Object#eql?).

Tries to return the element at position index, but throws an IndexError exception if the referenced index lies outside of the array bounds. This error can be prevented by supplying a second argument, which will act as a default value.

Alternatively, if a block is given it will only be executed when an invalid index is referenced.

Negative values of index count from the end of the array.

a = [ 11, 22, 33, 44 ]
a.fetch(1)               #=> 22
a.fetch(-1)              #=> 44
a.fetch(4, 'cat')        #=> "cat"
a.fetch(100) { |i| puts "#{i} is out of bounds" }
                         #=> "100 is out of bounds"

The first three forms set the selected elements of self (which may be the entire array) to obj.

A start of nil is equivalent to zero.

A length of nil is equivalent to the length of the array.

The last three forms fill the array with the value of the given block, which is passed the absolute index of each element to be filled.

Negative values of start count from the end of the array, where -1 is the last element.

a = [ "a", "b", "c", "d" ]
a.fill("x")              #=> ["x", "x", "x", "x"]
a.fill("z", 2, 2)        #=> ["x", "x", "z", "z"]
a.fill("y", 0..1)        #=> ["y", "y", "z", "z"]
a.fill { |i| i*i }       #=> [0, 1, 4, 9]
a.fill(-2) { |i| i*i*i } #=> [0, 1, 8, 27]

Returns the index of the first object in ary such that the object is == to obj.

If a block is given instead of an argument, returns the index of the first object for which the block returns true. Returns nil if no match is found.

See also Array#rindex.

An Enumerator is returned if neither a block nor argument is given.

a = [ "a", "b", "c" ]
a.index("b")              #=> 1
a.index("z")              #=> nil
a.index { |x| x == "b" }  #=> 1

Returns the first element, or the first n elements, of the array. If the array is empty, the first form returns nil, and the second form returns an empty array. See also Array#last for the opposite effect.

a = [ "q", "r", "s", "t" ]
a.first     #=> "q"
a.first(2)  #=> ["q", "r"]

Returns a new array that is a one-dimensional flattening of self (recursively).

That is, for every element that is an array, extract its elements into the new array.

The optional level argument determines the level of recursion to flatten.

s = [ 1, 2, 3 ]           #=> [1, 2, 3]
t = [ 4, 5, 6, [7, 8] ]   #=> [4, 5, 6, [7, 8]]
a = [ s, t, 9, 10 ]       #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
a.flatten                 #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
a = [ 1, 2, [3, [4, 5] ] ]
a.flatten(1)              #=> [1, 2, 3, [4, 5]]

Flattens self in place.

Returns nil if no modifications were made (i.e., the array contains no subarrays.)

The optional level argument determines the level of recursion to flatten.

a = [ 1, 2, [3, [4, 5] ] ]
a.flatten!   #=> [1, 2, 3, 4, 5]
a.flatten!   #=> nil
a            #=> [1, 2, 3, 4, 5]
a = [ 1, 2, [3, [4, 5] ] ]
a.flatten!(1) #=> [1, 2, 3, [4, 5]]

Return true if this array is frozen (or temporarily frozen while being sorted). See also Object#frozen?

Compute a hash-code for this array.

Two arrays with the same content will have the same hash code (and will compare using eql?).

See also Object#hash.

Returns true if the given object is present in self (that is, if any element == object), otherwise returns false.

a = [ "a", "b", "c" ]
a.include?("b")   #=> true
a.include?("z")   #=> false

Replaces the contents of self with the contents of other_ary, truncating or expanding if necessary.

a = [ "a", "b", "c", "d", "e" ]
a.replace([ "x", "y", "z" ])   #=> ["x", "y", "z"]
a                              #=> ["x", "y", "z"]

Inserts the given values before the element with the given index.

Negative indices count backwards from the end of the array, where -1 is the last element. If a negative index is used, the given values will be inserted after that element, so using an index of -1 will insert the values at the end of the array.

a = %w{ a b c d }
a.insert(2, 99)         #=> ["a", "b", 99, "c", "d"]
a.insert(-2, 1, 2, 3)   #=> ["a", "b", 99, "c", 1, 2, 3, "d"]

Creates a string representation of self.

[ "a", "b", "c" ].to_s     #=> "[\"a\", \"b\", \"c\"]"

Returns a string created by converting each element of the array to a string, separated by the given separator. If the separator is nil, it uses current $,. If both the separator and $, are nil, it uses an empty string.

[ "a", "b", "c" ].join        #=> "abc"
[ "a", "b", "c" ].join("-")   #=> "a-b-c"

For nested arrays, join is applied recursively:

[ "a", [1, 2, [:x, :y]], "b" ].join("-")   #=> "a-1-2-x-y-b"

Deletes every element of self for which the given block evaluates to false.

See also Array#select!

If no block is given, an Enumerator is returned instead.

a = %w{ a b c d e f }
a.keep_if { |v| v =~ /[aeiou]/ }  #=> ["a", "e"]

Returns the last element(s) of self. If the array is empty, the first form returns nil.

See also Array#first for the opposite effect.

a = [ "w", "x", "y", "z" ]
a.last     #=> "z"
a.last(2)  #=> ["y", "z"]

Returns the number of elements in self. May be zero.

[ 1, 2, 3, 4, 5 ].length   #=> 5
[].length                  #=> 0

Returns the object in ary with the maximum value. The first form assumes all objects implement Comparable; the second uses the block to return a <=> b.

ary = %w(albatross dog horse)
ary.max                                   #=> "horse"
ary.max { |a, b| a.length <=> b.length }  #=> "albatross"

If the n argument is given, maximum n elements are returned as an array.

ary = %w[albatross dog horse]
ary.max(2)                                  #=> ["horse", "dog"]
ary.max(2) {|a, b| a.length <=> b.length }  #=> ["albatross", "horse"]

Returns the object in ary with the minimum value. The first form assumes all objects implement Comparable; the second uses the block to return a <=> b.

ary = %w(albatross dog horse)
ary.min                                   #=> "albatross"
ary.min { |a, b| a.length <=> b.length }  #=> "dog"

If the n argument is given, minimum n elements are returned as an array.

ary = %w[albatross dog horse]
ary.min(2)                                  #=> ["albatross", "dog"]
ary.min(2) {|a, b| a.length <=> b.length }  #=> ["dog", "horse"]

Packs the contents of arr into a binary sequence according to the directives in aTemplateString (see the table below) Directives “A,” “a,” and “Z” may be followed by a count, which gives the width of the resulting field. The remaining directives also may take a count, indicating the number of array elements to convert. If the count is an asterisk (“*”), all remaining array elements will be converted. Any of the directives “sSiIlL” may be followed by an underscore (“_”) or exclamation mark (“!”) to use the underlying platform’s native size for the specified type; otherwise, they use a platform-independent size. Spaces are ignored in the template string. See also String#unpack.

a = [ "a", "b", "c" ]
n = [ 65, 66, 67 ]
a.pack("A3A3A3")   #=> "a  b  c  "
a.pack("a3a3a3")   #=> "a\000\000b\000\000c\000\000"
n.pack("ccc")      #=> "ABC"

If aBufferString is specified and its capacity is enough, pack uses it as the buffer and returns it. When the offset is specified by the beginning of aTemplateString, the result is filled after the offset. If original contents of aBufferString exists and it’s longer than the offset, the rest of offsetOfBuffer are overwritten by the result. If it’s shorter, the gap is filled with “\0”.

Note that “buffer:” option does not guarantee not to allocate memory in pack. If the capacity of aBufferString is not enough, pack allocates memory.

Directives for pack.

Integer       | Array   |
Directive     | Element | Meaning
----------------------------------------------------------------------------
C             | Integer | 8-bit unsigned (unsigned char)
S             | Integer | 16-bit unsigned, native endian (uint16_t)
L             | Integer | 32-bit unsigned, native endian (uint32_t)
Q             | Integer | 64-bit unsigned, native endian (uint64_t)
J             | Integer | pointer width unsigned, native endian (uintptr_t)
              |         | (J is available since Ruby 2.3.)
              |         |
c             | Integer | 8-bit signed (signed char)
s             | Integer | 16-bit signed, native endian (int16_t)
l             | Integer | 32-bit signed, native endian (int32_t)
q             | Integer | 64-bit signed, native endian (int64_t)
j             | Integer | pointer width signed, native endian (intptr_t)
              |         | (j is available since Ruby 2.3.)
              |         |
S_ S!         | Integer | unsigned short, native endian
I I_ I!       | Integer | unsigned int, native endian
L_ L!         | Integer | unsigned long, native endian
Q_ Q!         | Integer | unsigned long long, native endian (ArgumentError
              |         | if the platform has no long long type.)
              |         | (Q_ and Q! is available since Ruby 2.1.)
J!            | Integer | uintptr_t, native endian (same with J)
              |         | (J! is available since Ruby 2.3.)
              |         |
s_ s!         | Integer | signed short, native endian
i i_ i!       | Integer | signed int, native endian
l_ l!         | Integer | signed long, native endian
q_ q!         | Integer | signed long long, native endian (ArgumentError
              |         | if the platform has no long long type.)
              |         | (q_ and q! is available since Ruby 2.1.)
j!            | Integer | intptr_t, native endian (same with j)
              |         | (j! is available since Ruby 2.3.)
              |         |
S> s> S!> s!> | Integer | same as the directives without ">" except
L> l> L!> l!> |         | big endian
I!> i!>       |         | (available since Ruby 1.9.3)
Q> q> Q!> q!> |         | "S>" is same as "n"
J> j> J!> j!> |         | "L>" is same as "N"
              |         |
S< s< S!< s!< | Integer | same as the directives without "<" except
L< l< L!< l!< |         | little endian
I!< i!<       |         | (available since Ruby 1.9.3)
Q< q< Q!< q!< |         | "S<" is same as "v"
J< j< J!< j!< |         | "L<" is same as "V"
              |         |
n             | Integer | 16-bit unsigned, network (big-endian) byte order
N             | Integer | 32-bit unsigned, network (big-endian) byte order
v             | Integer | 16-bit unsigned, VAX (little-endian) byte order
V             | Integer | 32-bit unsigned, VAX (little-endian) byte order
              |         |
U             | Integer | UTF-8 character
w             | Integer | BER-compressed integer

Float        | Array   |
Directive    | Element | Meaning
---------------------------------------------------------------------------
D d          | Float   | double-precision, native format
F f          | Float   | single-precision, native format
E            | Float   | double-precision, little-endian byte order
e            | Float   | single-precision, little-endian byte order
G            | Float   | double-precision, network (big-endian) byte order
g            | Float   | single-precision, network (big-endian) byte order

String       | Array   |
Directive    | Element | Meaning
---------------------------------------------------------------------------
A            | String  | arbitrary binary string (space padded, count is width)
a            | String  | arbitrary binary string (null padded, count is width)
Z            | String  | same as ``a'', except that null is added with *
B            | String  | bit string (MSB first)
b            | String  | bit string (LSB first)
H            | String  | hex string (high nibble first)
h            | String  | hex string (low nibble first)
u            | String  | UU-encoded string
M            | String  | quoted printable, MIME encoding (see RFC2045)
m            | String  | base64 encoded string (see RFC 2045, count is width)
             |         | (if count is 0, no line feed are added, see RFC 4648)
P            | String  | pointer to a structure (fixed-length string)
p            | String  | pointer to a null-terminated string

Misc.        | Array   |
Directive    | Element | Meaning
---------------------------------------------------------------------------
@            | ---     | moves to absolute position
X            | ---     | back up a byte
x            | ---     | null byte

When invoked with a block, yield all permutations of length n of the elements of the array, then return the array itself.

If n is not specified, yield all permutations of all elements.

The implementation makes no guarantees about the order in which the permutations are yielded.

If no block is given, an Enumerator is returned instead.

Examples:

a = [1, 2, 3]
a.permutation.to_a    #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutation(1).to_a #=> [[1],[2],[3]]
a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutation(0).to_a #=> [[]] # one permutation of length 0
a.permutation(4).to_a #=> []   # no permutations of length 4

Removes the last element from self and returns it, or nil if the array is empty.

If a number n is given, returns an array of the last n elements (or less) just like array.slice!(-n, n) does. See also Array#push for the opposite effect.

a = [ "a", "b", "c", "d" ]
a.pop     #=> "d"
a.pop(2)  #=> ["b", "c"]
a         #=> ["a"]

Returns an array of all combinations of elements from all arrays.

The length of the returned array is the product of the length of self and the argument arrays.

If given a block, product will yield all combinations and return self instead.

[1,2,3].product([4,5])     #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
[1,2].product([1,2])       #=> [[1,1],[1,2],[2,1],[2,2]]
[1,2].product([3,4],[5,6]) #=> [[1,3,5],[1,3,6],[1,4,5],[1,4,6],
                           #     [2,3,5],[2,3,6],[2,4,5],[2,4,6]]
[1,2].product()            #=> [[1],[2]]
[1,2].product([])          #=> []

Append — Pushes the given object(s) on to the end of this array. This expression returns the array itself, so several appends may be chained together. See also Array#pop for the opposite effect.

a = [ "a", "b", "c" ]
a.push("d", "e", "f")
        #=> ["a", "b", "c", "d", "e", "f"]
[1, 2, 3].push(4).push(5)
        #=> [1, 2, 3, 4, 5]

Searches through the array whose elements are also arrays.

Compares obj with the second element of each contained array using obj.==.

Returns the first contained array that matches obj.

See also Array#assoc.

a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ]
a.rassoc("two")    #=> [2, "two"]
a.rassoc("four")   #=> nil

Returns a new array containing the items in self for which the given block is not true. The ordering of non-rejected elements is maintained.

See also Array#delete_if

If no block is given, an Enumerator is returned instead.

Deletes every element of self for which the block evaluates to true, if no changes were made returns nil.

The array may not be changed instantly every time the block is called.

See also Enumerable#reject and Array#delete_if.

If no block is given, an Enumerator is returned instead.

When invoked with a block, yields all repeated combinations of length n of elements from the array and then returns the array itself.

The implementation makes no guarantees about the order in which the repeated combinations are yielded.

If no block is given, an Enumerator is returned instead.

Examples:

a = [1, 2, 3]
a.repeated_combination(1).to_a  #=> [[1], [2], [3]]
a.repeated_combination(2).to_a  #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]]
a.repeated_combination(3).to_a  #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3],
                                #    [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]]
a.repeated_combination(4).to_a  #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3],
                                #    [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3],
                                #    [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]]
a.repeated_combination(0).to_a  #=> [[]] # one combination of length 0

When invoked with a block, yield all repeated permutations of length n of the elements of the array, then return the array itself.

The implementation makes no guarantees about the order in which the repeated permutations are yielded.

If no block is given, an Enumerator is returned instead.

Examples:

a = [1, 2]
a.repeated_permutation(1).to_a  #=> [[1], [2]]
a.repeated_permutation(2).to_a  #=> [[1,1],[1,2],[2,1],[2,2]]
a.repeated_permutation(3).to_a  #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2],
                                #    [2,1,1],[2,1,2],[2,2,1],[2,2,2]]
a.repeated_permutation(0).to_a  #=> [[]] # one permutation of length 0

Returns a new array containing self‘s elements in reverse order.

[ "a", "b", "c" ].reverse   #=> ["c", "b", "a"]
[ 1 ].reverse               #=> [1]

Reverses self in place.

a = [ "a", "b", "c" ]
a.reverse!       #=> ["c", "b", "a"]
a                #=> ["c", "b", "a"]

Same as Array#each, but traverses self in reverse order.

a = [ "a", "b", "c" ]
a.reverse_each {|x| print x, " " }

produces:

c b a

Returns the index of the last object in self == to obj.

If a block is given instead of an argument, returns the index of the first object for which the block returns true, starting from the last object.

Returns nil if no match is found.

See also Array#index.

If neither block nor argument is given, an Enumerator is returned instead.

a = [ "a", "b", "b", "b", "c" ]
a.rindex("b")             #=> 3
a.rindex("z")             #=> nil
a.rindex { |x| x == "b" } #=> 3

Returns a new array by rotating self so that the element at count is the first element of the new array.

If count is negative then it rotates in the opposite direction, starting from the end of self where -1 is the last element.

a = [ "a", "b", "c", "d" ]
a.rotate         #=> ["b", "c", "d", "a"]
a                #=> ["a", "b", "c", "d"]
a.rotate(2)      #=> ["c", "d", "a", "b"]
a.rotate(-3)     #=> ["b", "c", "d", "a"]

Rotates self in place so that the element at count comes first, and returns self.

If count is negative then it rotates in the opposite direction, starting from the end of the array where -1 is the last element.

a = [ "a", "b", "c", "d" ]
a.rotate!        #=> ["b", "c", "d", "a"]
a                #=> ["b", "c", "d", "a"]
a.rotate!(2)     #=> ["d", "a", "b", "c"]
a.rotate!(-3)    #=> ["a", "b", "c", "d"]

Choose a random element or n random elements from the array.

The elements are chosen by using random and unique indices into the array in order to ensure that an element doesn’t repeat itself unless the array already contained duplicate elements.

If the array is empty the first form returns nil and the second form returns an empty array.

The optional rng argument will be used as the random number generator.

a = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
a.sample         #=> 7
a.sample(4)      #=> [6, 4, 2, 5]

Returns a new array containing all elements of ary for which the given block returns a true value.

If no block is given, an Enumerator is returned instead.

[1,2,3,4,5].select { |num|  num.even?  }   #=> [2, 4]

a = %w{ a b c d e f }
a.select { |v| v =~ /[aeiou]/ }  #=> ["a", "e"]

See also Enumerable#select.

Invokes the given block passing in successive elements from self, deleting elements for which the block returns a false value.

The array may not be changed instantly every time the block is called.

If changes were made, it will return self, otherwise it returns nil.

See also Array#keep_if

If no block is given, an Enumerator is returned instead.

Builds a command line string from an argument list array joining all elements escaped for the Bourne shell and separated by a space.

See Shellwords.shelljoin for details.

Removes the first element of self and returns it (shifting all other elements down by one). Returns nil if the array is empty.

If a number n is given, returns an array of the first n elements (or less) just like array.slice!(0, n) does. With ary containing only the remainder elements, not including what was shifted to new_ary. See also Array#unshift for the opposite effect.

args = [ "-m", "-q", "filename" ]
args.shift     #=> "-m"
args           #=> ["-q", "filename"]

args = [ "-m", "-q", "filename" ]
args.shift(2)  #=> ["-m", "-q"]
args           #=> ["filename"]

Returns a new array with elements of self shuffled.

a = [ 1, 2, 3 ]           #=> [1, 2, 3]
a.shuffle                 #=> [2, 3, 1]
a                         #=> [1, 2, 3]

The optional rng argument will be used as the random number generator.

a.shuffle(random: Random.new(1))  #=> [1, 3, 2]

Shuffles elements in self in place.

a = [ 1, 2, 3 ]           #=> [1, 2, 3]
a.shuffle!                #=> [2, 3, 1]
a                         #=> [2, 3, 1]

The optional rng argument will be used as the random number generator.

a.shuffle!(random: Random.new(1))  #=> [1, 3, 2]
An alias for length

Deletes the element(s) given by an index (optionally up to length elements) or by a range.

Returns the deleted object (or objects), or nil if the index is out of range.

a = [ "a", "b", "c" ]
a.slice!(1)     #=> "b"
a               #=> ["a", "c"]
a.slice!(-1)    #=> "c"
a               #=> ["a"]
a.slice!(100)   #=> nil
a               #=> ["a"]

Returns a new array created by sorting self.

Comparisons for the sort will be done using the <=> operator or using an optional code block.

The block must implement a comparison between a and b and return an integer less than 0 when b follows a, 0 when a and b are equivalent, or an integer greater than 0 when a follows b.

The result is not guaranteed to be stable. When the comparison of two elements returns 0, the order of the elements is unpredictable.

ary = [ "d", "a", "e", "c", "b" ]
ary.sort                     #=> ["a", "b", "c", "d", "e"]
ary.sort { |a, b| b <=> a }  #=> ["e", "d", "c", "b", "a"]

See also Enumerable#sort_by.

Sorts self in place.

Comparisons for the sort will be done using the <=> operator or using an optional code block.

The block must implement a comparison between a and b and return an integer less than 0 when b follows a, 0 when a and b are equivalent, or an integer greater than 0 when a follows b.

The result is not guaranteed to be stable. When the comparison of two elements returns 0, the order of the elements is unpredictable.

ary = [ "d", "a", "e", "c", "b" ]
ary.sort!                     #=> ["a", "b", "c", "d", "e"]
ary.sort! { |a, b| b <=> a }  #=> ["e", "d", "c", "b", "a"]

See also Enumerable#sort_by.

Sorts self in place using a set of keys generated by mapping the values in self through the given block.

The result is not guaranteed to be stable. When two keys are equal, the order of the corresponding elements is unpredictable.

If no block is given, an Enumerator is returned instead.

See also Enumerable#sort_by.

Returns the sum of elements. For example, [e1, e2, e3].sum returns init + e1 + e2 + e3.

If a block is given, the block is applied to each element before addition.

If ary is empty, it returns init.

[].sum                             #=> 0
[].sum(0.0)                        #=> 0.0
[1, 2, 3].sum                      #=> 6
[3, 5.5].sum                       #=> 8.5
[2.5, 3.0].sum(0.0) {|e| e * e }   #=> 15.25
[Object.new].sum                   #=> TypeError

The (arithmetic) mean value of an array can be obtained as follows.

mean = ary.sum(0.0) / ary.length

This method can be used for non-numeric objects by explicit init argument.

["a", "b", "c"].sum("")            #=> "abc"
[[1], [[2]], [3]].sum([])          #=> [1, [2], 3]

However, Array#join and Array#flatten is faster than Array#sum for array of strings and array of arrays.

["a", "b", "c"].join               #=> "abc"
[[1], [[2]], [3]].flatten(1)       #=> [1, [2], 3]

Array#sum method may not respect method redefinition of “+” methods such as Integer#+.

Returns first n elements from the array.

If a negative number is given, raises an ArgumentError.

See also Array#drop

a = [1, 2, 3, 4, 5, 0]
a.take(3)             #=> [1, 2, 3]

Passes elements to the block until the block returns nil or false, then stops iterating and returns an array of all prior elements.

If no block is given, an Enumerator is returned instead.

See also Array#drop_while

a = [1, 2, 3, 4, 5, 0]
a.take_while { |i| i < 3 }  #=> [1, 2]

Returns self.

If called on a subclass of Array, converts the receiver to an Array object.

Returns self.

Returns the result of interpreting ary as an array of [key, value] pairs.

[[:foo, :bar], [1, 2]].to_h
  # => {:foo => :bar, 1 => 2}

Assumes that self is an array of arrays and transposes the rows and columns.

a = [[1,2], [3,4], [5,6]]
a.transpose   #=> [[1, 3, 5], [2, 4, 6]]

If the length of the subarrays don’t match, an IndexError is raised.

Returns a new array by removing duplicate values in self.

If a block is given, it will use the return value of the block for comparison.

It compares values using their hash and eql? methods for efficiency.

self is traversed in order, and the first occurrence is kept.

a = [ "a", "a", "b", "b", "c" ]
a.uniq   # => ["a", "b", "c"]

b = [["student","sam"], ["student","george"], ["teacher","matz"]]
b.uniq { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]]

Removes duplicate elements from self.

If a block is given, it will use the return value of the block for comparison.

It compares values using their hash and eql? methods for efficiency.

self is traversed in order, and the first occurrence is kept.

Returns nil if no changes are made (that is, no duplicates are found).

a = [ "a", "a", "b", "b", "c" ]
a.uniq!   # => ["a", "b", "c"]

b = [ "a", "b", "c" ]
b.uniq!   # => nil

c = [["student","sam"], ["student","george"], ["teacher","matz"]]
c.uniq! { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]]

Prepends objects to the front of self, moving other elements upwards. See also Array#shift for the opposite effect.

a = [ "b", "c", "d" ]
a.unshift("a")   #=> ["a", "b", "c", "d"]
a.unshift(1, 2)  #=> [ 1, 2, "a", "b", "c", "d"]

Returns an array containing the elements in self corresponding to the given selector(s).

The selectors may be either integer indices or ranges.

See also Array#select.

a = %w{ a b c d e f }
a.values_at(1, 3, 5)          # => ["b", "d", "f"]
a.values_at(1, 3, 5, 7)       # => ["b", "d", "f", nil]
a.values_at(-1, -2, -2, -7)   # => ["f", "e", "e", nil]
a.values_at(4..6, 3...6)      # => ["e", "f", nil, "d", "e", "f"]

Converts any arguments to arrays, then merges elements of self with corresponding elements from each argument.

This generates a sequence of ary.size n-element arrays, where n is one more than the count of arguments.

If the size of any argument is less than the size of the initial array, nil values are supplied.

If a block is given, it is invoked for each output array, otherwise an array of arrays is returned.

a = [ 4, 5, 6 ]
b = [ 7, 8, 9 ]
[1, 2, 3].zip(a, b)   #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
[1, 2].zip(a, b)      #=> [[1, 4, 7], [2, 5, 8]]
a.zip([1, 2], [8])    #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]

Set Union — Returns a new array by joining ary with other_ary, excluding any duplicates and preserving the order from the given arrays.

It compares elements using their hash and eql? methods for efficiency.

[ "a", "b", "c" ] | [ "c", "d", "a" ]    #=> [ "a", "b", "c", "d" ]
[ "c", "d", "a" ] | [ "a", "b", "c" ]    #=> [ "c", "d", "a", "b" ]

See also Array#uniq.