Results for: "OptionParser"

Raised when throw is called with a tag which does not have corresponding catch block.

throw "foo", "bar"

raises the exception:

UncaughtThrowError: uncaught throw "foo"

RubyGems adds the gem method to allow activation of specific gem versions and overrides the require method on Kernel to make gems appear as if they live on the $LOAD_PATH. See the documentation of these methods for further detail.

The Kernel module is included by class Object, so its methods are available in every Ruby object.

The Kernel instance methods are documented in class Object while the module methods are documented here. These methods are called without a receiver and thus can be called in functional form:

sprintf "%.1f", 1.234 #=> "1.2"

The Enumerable mixin provides collection classes with several traversal and searching methods, and with the ability to sort. The class must provide a method each, which yields successive members of the collection. If Enumerable#max, #min, or #sort is used, the objects in the collection must also implement a meaningful <=> operator, as these methods rely on an ordering between members of the collection.

Ruby exception objects are subclasses of Exception. However, operating systems typically report errors using plain integers. Module Errno is created dynamically to map these operating system errors to Ruby classes, with each error number generating its own subclass of SystemCallError. As the subclass is created in module Errno, its name will start Errno::.

The names of the Errno:: classes depend on the environment in which Ruby runs. On a typical Unix or Windows platform, there are Errno classes such as Errno::EACCES, Errno::EAGAIN, Errno::EINTR, and so on.

The integer operating system error number corresponding to a particular error is available as the class constant Errno::error::Errno.

Errno::EACCES::Errno   #=> 13
Errno::EAGAIN::Errno   #=> 11
Errno::EINTR::Errno    #=> 4

The full list of operating system errors on your particular platform are available as the constants of Errno.

Errno.constants   #=> :E2BIG, :EACCES, :EADDRINUSE, :EADDRNOTAVAIL, ...

System call error module used by webrick for cross platform compatibility.

EPROTO

protocol error

ECONNRESET

remote host reset the connection request

ECONNABORTED

Client sent TCP reset (RST) before server has accepted the connection requested by client.

No documentation available

newton.rb

Solves the nonlinear algebraic equation system f = 0 by Newton’s method. This program is not dependent on BigDecimal.

To call:

  n = nlsolve(f,x)
where n is the number of iterations required,
      x is the initial value vector
      f is an Object which is used to compute the values of the equations to be solved.

It must provide the following methods:

f.values(x)

returns the values of all functions at x

f.zero

returns 0.0

f.one

returns 1.0

f.two

returns 2.0

f.ten

returns 10.0

f.eps

returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.

On exit, x is the solution vector.

Coverage provides coverage measurement feature for Ruby. This feature is experimental, so these APIs may be changed in future.

Usage

  1. require “coverage”

  2. do Coverage.start

  3. require or load Ruby source file

  4. Coverage.result will return a hash that contains filename as key and coverage array as value. A coverage array gives, for each line, the number of line execution by the interpreter. A nil value means coverage is disabled for this line (lines like else and end).

Example

[foo.rb]
s = 0
10.times do |x|
  s += x
end

if s == 45
  p :ok
else
  p :ng
end
[EOF]

require "coverage"
Coverage.start
require "foo.rb"
p Coverage.result  #=> {"foo.rb"=>[1, 1, 10, nil, nil, 1, 1, nil, 0, nil]}

JavaScript Object Notation (JSON)

JSON is a lightweight data-interchange format. It is easy for us humans to read and write. Plus, equally simple for machines to generate or parse. JSON is completely language agnostic, making it the ideal interchange format.

Built on two universally available structures:

1. A collection of name/value pairs. Often referred to as an _object_, hash table, record, struct, keyed list, or associative array.
2. An ordered list of values. More commonly called an _array_, vector, sequence or list.

To read more about JSON visit: json.org

Parsing JSON

To parse a JSON string received by another application or generated within your existing application:

require 'json'

my_hash = JSON.parse('{"hello": "goodbye"}')
puts my_hash["hello"] => "goodbye"

Notice the extra quotes '' around the hash notation. Ruby expects the argument to be a string and can’t convert objects like a hash or array.

Ruby converts your string into a hash

Generating JSON

Creating a JSON string for communication or serialization is just as simple.

require 'json'

my_hash = {:hello => "goodbye"}
puts JSON.generate(my_hash) => "{\"hello\":\"goodbye\"}"

Or an alternative way:

require 'json'
puts {:hello => "goodbye"}.to_json => "{\"hello\":\"goodbye\"}"

JSON.generate only allows objects or arrays to be converted to JSON syntax. to_json, however, accepts many Ruby classes even though it acts only as a method for serialization:

require 'json'

1.to_json => "1"

Kanji Converter for Ruby.

The objspace library extends the ObjectSpace module and adds several methods to get internal statistic information about object/memory management.

You need to require 'objspace' to use this extension module.

Generally, you *SHOULD NOT* use this library if you do not know about the MRI implementation. Mainly, this library is for (memory) profiler developers and MRI developers who need to know about MRI memory usage.

The ObjectSpace module contains a number of routines that interact with the garbage collection facility and allow you to traverse all living objects with an iterator.

ObjectSpace also provides support for object finalizers, procs that will be called when a specific object is about to be destroyed by garbage collection.

require 'objspace'

a = "A"
b = "B"

ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" })

produces:

Finalizer two on 537763470
Finalizer one on 537763480

OpenSSL provides SSL, TLS and general purpose cryptography. It wraps the OpenSSL library.

Examples

All examples assume you have loaded OpenSSL with:

require 'openssl'

These examples build atop each other. For example the key created in the next is used in throughout these examples.

Keys

Creating a Key

This example creates a 2048 bit RSA keypair and writes it to the current directory.

key = OpenSSL::PKey::RSA.new 2048

open 'private_key.pem', 'w' do |io| io.write key.to_pem end
open 'public_key.pem', 'w' do |io| io.write key.public_key.to_pem end

Exporting a Key

Keys saved to disk without encryption are not secure as anyone who gets ahold of the key may use it unless it is encrypted. In order to securely export a key you may export it with a pass phrase.

cipher = OpenSSL::Cipher.new 'AES-128-CBC'
pass_phrase = 'my secure pass phrase goes here'

key_secure = key.export cipher, pass_phrase

open 'private.secure.pem', 'w' do |io|
  io.write key_secure
end

OpenSSL::Cipher.ciphers returns a list of available ciphers.

Loading a Key

A key can also be loaded from a file.

key2 = OpenSSL::PKey::RSA.new File.read 'private_key.pem'
key2.public? # => true
key2.private? # => true

or

key3 = OpenSSL::PKey::RSA.new File.read 'public_key.pem'
key3.public? # => true
key3.private? # => false

Loading an Encrypted Key

OpenSSL will prompt you for your pass phrase when loading an encrypted key. If you will not be able to type in the pass phrase you may provide it when loading the key:

key4_pem = File.read 'private.secure.pem'
pass_phrase = 'my secure pass phrase goes here'
key4 = OpenSSL::PKey::RSA.new key4_pem, pass_phrase

RSA Encryption

RSA provides encryption and decryption using the public and private keys. You can use a variety of padding methods depending upon the intended use of encrypted data.

Encryption & Decryption

Asymmetric public/private key encryption is slow and victim to attack in cases where it is used without padding or directly to encrypt larger chunks of data. Typical use cases for RSA encryption involve “wrapping” a symmetric key with the public key of the recipient who would “unwrap” that symmetric key again using their private key. The following illustrates a simplified example of such a key transport scheme. It shouldn’t be used in practice, though, standardized protocols should always be preferred.

wrapped_key = key.public_encrypt key

A symmetric key encrypted with the public key can only be decrypted with the corresponding private key of the recipient.

original_key = key.private_decrypt wrapped_key

By default PKCS#1 padding will be used, but it is also possible to use other forms of padding, see PKey::RSA for further details.

Signatures

Using “private_encrypt” to encrypt some data with the private key is equivalent to applying a digital signature to the data. A verifying party may validate the signature by comparing the result of decrypting the signature with “public_decrypt” to the original data. However, OpenSSL::PKey already has methods “sign” and “verify” that handle digital signatures in a standardized way - “private_encrypt” and “public_decrypt” shouldn’t be used in practice.

To sign a document, a cryptographically secure hash of the document is computed first, which is then signed using the private key.

digest = OpenSSL::Digest::SHA256.new
signature = key.sign digest, document

To validate the signature, again a hash of the document is computed and the signature is decrypted using the public key. The result is then compared to the hash just computed, if they are equal the signature was valid.

digest = OpenSSL::Digest::SHA256.new
if key.verify digest, signature, document
  puts 'Valid'
else
  puts 'Invalid'
end

PBKDF2 Password-based Encryption

If supported by the underlying OpenSSL version used, Password-based Encryption should use the features of PKCS5. If not supported or if required by legacy applications, the older, less secure methods specified in RFC 2898 are also supported (see below).

PKCS5 supports PBKDF2 as it was specified in PKCS#5 v2.0. It still uses a password, a salt, and additionally a number of iterations that will slow the key derivation process down. The slower this is, the more work it requires being able to brute-force the resulting key.

Encryption

The strategy is to first instantiate a Cipher for encryption, and then to generate a random IV plus a key derived from the password using PBKDF2. PKCS #5 v2.0 recommends at least 8 bytes for the salt, the number of iterations largely depends on the hardware being used.

cipher = OpenSSL::Cipher.new 'AES-128-CBC'
cipher.encrypt
iv = cipher.random_iv

pwd = 'some hopefully not to easily guessable password'
salt = OpenSSL::Random.random_bytes 16
iter = 20000
key_len = cipher.key_len
digest = OpenSSL::Digest::SHA256.new

key = OpenSSL::PKCS5.pbkdf2_hmac(pwd, salt, iter, key_len, digest)
cipher.key = key

Now encrypt the data:

encrypted = cipher.update document
encrypted << cipher.final

Decryption

Use the same steps as before to derive the symmetric AES key, this time setting the Cipher up for decryption.

cipher = OpenSSL::Cipher.new 'AES-128-CBC'
cipher.decrypt
cipher.iv = iv # the one generated with #random_iv

pwd = 'some hopefully not to easily guessable password'
salt = ... # the one generated above
iter = 20000
key_len = cipher.key_len
digest = OpenSSL::Digest::SHA256.new

key = OpenSSL::PKCS5.pbkdf2_hmac(pwd, salt, iter, key_len, digest)
cipher.key = key

Now decrypt the data:

decrypted = cipher.update encrypted
decrypted << cipher.final

PKCS #5 Password-based Encryption

PKCS #5 is a password-based encryption standard documented at RFC2898. It allows a short password or passphrase to be used to create a secure encryption key. If possible, PBKDF2 as described above should be used if the circumstances allow it.

PKCS #5 uses a Cipher, a pass phrase and a salt to generate an encryption key.

pass_phrase = 'my secure pass phrase goes here'
salt = '8 octets'

Encryption

First set up the cipher for encryption

encryptor = OpenSSL::Cipher.new 'AES-128-CBC'
encryptor.encrypt
encryptor.pkcs5_keyivgen pass_phrase, salt

Then pass the data you want to encrypt through

encrypted = encryptor.update 'top secret document'
encrypted << encryptor.final

Decryption

Use a new Cipher instance set up for decryption

decryptor = OpenSSL::Cipher.new 'AES-128-CBC'
decryptor.decrypt
decryptor.pkcs5_keyivgen pass_phrase, salt

Then pass the data you want to decrypt through

plain = decryptor.update encrypted
plain << decryptor.final

X509 Certificates

Creating a Certificate

This example creates a self-signed certificate using an RSA key and a SHA1 signature.

key = OpenSSL::PKey::RSA.new 2048
name = OpenSSL::X509::Name.parse 'CN=nobody/DC=example'

cert = OpenSSL::X509::Certificate.new
cert.version = 2
cert.serial = 0
cert.not_before = Time.now
cert.not_after = Time.now + 3600

cert.public_key = key.public_key
cert.subject = name

Certificate Extensions

You can add extensions to the certificate with OpenSSL::SSL::ExtensionFactory to indicate the purpose of the certificate.

extension_factory = OpenSSL::X509::ExtensionFactory.new nil, cert

cert.add_extension \
  extension_factory.create_extension('basicConstraints', 'CA:FALSE', true)

cert.add_extension \
  extension_factory.create_extension(
    'keyUsage', 'keyEncipherment,dataEncipherment,digitalSignature')

cert.add_extension \
  extension_factory.create_extension('subjectKeyIdentifier', 'hash')

The list of supported extensions (and in some cases their possible values) can be derived from the “objects.h” file in the OpenSSL source code.

Signing a Certificate

To sign a certificate set the issuer and use OpenSSL::X509::Certificate#sign with a digest algorithm. This creates a self-signed cert because we’re using the same name and key to sign the certificate as was used to create the certificate.

cert.issuer = name
cert.sign key, OpenSSL::Digest::SHA1.new

open 'certificate.pem', 'w' do |io| io.write cert.to_pem end

Loading a Certificate

Like a key, a cert can also be loaded from a file.

cert2 = OpenSSL::X509::Certificate.new File.read 'certificate.pem'

Verifying a Certificate

Certificate#verify will return true when a certificate was signed with the given public key.

raise 'certificate can not be verified' unless cert2.verify key

Certificate Authority

A certificate authority (CA) is a trusted third party that allows you to verify the ownership of unknown certificates. The CA issues key signatures that indicate it trusts the user of that key. A user encountering the key can verify the signature by using the CA’s public key.

CA Key

CA keys are valuable, so we encrypt and save it to disk and make sure it is not readable by other users.

ca_key = OpenSSL::PKey::RSA.new 2048
pass_phrase = 'my secure pass phrase goes here'

cipher = OpenSSL::Cipher.new 'AES-128-CBC'

open 'ca_key.pem', 'w', 0400 do |io|
  io.write ca_key.export(cipher, pass_phrase)
end

CA Certificate

A CA certificate is created the same way we created a certificate above, but with different extensions.

ca_name = OpenSSL::X509::Name.parse 'CN=ca/DC=example'

ca_cert = OpenSSL::X509::Certificate.new
ca_cert.serial = 0
ca_cert.version = 2
ca_cert.not_before = Time.now
ca_cert.not_after = Time.now + 86400

ca_cert.public_key = ca_key.public_key
ca_cert.subject = ca_name
ca_cert.issuer = ca_name

extension_factory = OpenSSL::X509::ExtensionFactory.new
extension_factory.subject_certificate = ca_cert
extension_factory.issuer_certificate = ca_cert

ca_cert.add_extension \
  extension_factory.create_extension('subjectKeyIdentifier', 'hash')

This extension indicates the CA’s key may be used as a CA.

ca_cert.add_extension \
  extension_factory.create_extension('basicConstraints', 'CA:TRUE', true)

This extension indicates the CA’s key may be used to verify signatures on both certificates and certificate revocations.

ca_cert.add_extension \
  extension_factory.create_extension(
    'keyUsage', 'cRLSign,keyCertSign', true)

Root CA certificates are self-signed.

ca_cert.sign ca_key, OpenSSL::Digest::SHA1.new

The CA certificate is saved to disk so it may be distributed to all the users of the keys this CA will sign.

open 'ca_cert.pem', 'w' do |io|
  io.write ca_cert.to_pem
end

Certificate Signing Request

The CA signs keys through a Certificate Signing Request (CSR). The CSR contains the information necessary to identify the key.

csr = OpenSSL::X509::Request.new
csr.version = 0
csr.subject = name
csr.public_key = key.public_key
csr.sign key, OpenSSL::Digest::SHA1.new

A CSR is saved to disk and sent to the CA for signing.

open 'csr.pem', 'w' do |io|
  io.write csr.to_pem
end

Creating a Certificate from a CSR

Upon receiving a CSR the CA will verify it before signing it. A minimal verification would be to check the CSR’s signature.

csr = OpenSSL::X509::Request.new File.read 'csr.pem'

raise 'CSR can not be verified' unless csr.verify csr.public_key

After verification a certificate is created, marked for various usages, signed with the CA key and returned to the requester.

csr_cert = OpenSSL::X509::Certificate.new
csr_cert.serial = 0
csr_cert.version = 2
csr_cert.not_before = Time.now
csr_cert.not_after = Time.now + 600

csr_cert.subject = csr.subject
csr_cert.public_key = csr.public_key
csr_cert.issuer = ca_cert.subject

extension_factory = OpenSSL::X509::ExtensionFactory.new
extension_factory.subject_certificate = csr_cert
extension_factory.issuer_certificate = ca_cert

csr_cert.add_extension \
  extension_factory.create_extension('basicConstraints', 'CA:FALSE')

csr_cert.add_extension \
  extension_factory.create_extension(
    'keyUsage', 'keyEncipherment,dataEncipherment,digitalSignature')

csr_cert.add_extension \
  extension_factory.create_extension('subjectKeyIdentifier', 'hash')

csr_cert.sign ca_key, OpenSSL::Digest::SHA1.new

open 'csr_cert.pem', 'w' do |io|
  io.write csr_cert.to_pem
end

SSL and TLS Connections

Using our created key and certificate we can create an SSL or TLS connection. An SSLContext is used to set up an SSL session.

context = OpenSSL::SSL::SSLContext.new

SSL Server

An SSL server requires the certificate and private key to communicate securely with its clients:

context.cert = cert
context.key = key

Then create an SSLServer with a TCP server socket and the context. Use the SSLServer like an ordinary TCP server.

require 'socket'

tcp_server = TCPServer.new 5000
ssl_server = OpenSSL::SSL::SSLServer.new tcp_server, context

loop do
  ssl_connection = ssl_server.accept

  data = connection.gets

  response = "I got #{data.dump}"
  puts response

  connection.puts "I got #{data.dump}"
  connection.close
end

SSL client

An SSL client is created with a TCP socket and the context. SSLSocket#connect must be called to initiate the SSL handshake and start encryption. A key and certificate are not required for the client socket.

Note that SSLSocket#close doesn’t close the underlying socket by default. Set SSLSocket#sync_close to true if you want.

require 'socket'

tcp_socket = TCPSocket.new 'localhost', 5000
ssl_client = OpenSSL::SSL::SSLSocket.new tcp_socket, context
ssl_client.sync_close = true
ssl_client.connect

ssl_client.puts "hello server!"
puts ssl_client.gets

ssl_client.close # shutdown the TLS connection and close tcp_socket

Peer Verification

An unverified SSL connection does not provide much security. For enhanced security the client or server can verify the certificate of its peer.

The client can be modified to verify the server’s certificate against the certificate authority’s certificate:

context.ca_file = 'ca_cert.pem'
context.verify_mode = OpenSSL::SSL::VERIFY_PEER

require 'socket'

tcp_socket = TCPSocket.new 'localhost', 5000
ssl_client = OpenSSL::SSL::SSLSocket.new tcp_socket, context
ssl_client.connect

ssl_client.puts "hello server!"
puts ssl_client.gets

If the server certificate is invalid or context.ca_file is not set when verifying peers an OpenSSL::SSL::SSLError will be raised.

PTY

Creates and managed pseudo terminals (PTYs). See also en.wikipedia.org/wiki/Pseudo_terminal

PTY allows you to allocate new terminals using ::open or ::spawn a new terminal with a specific command.

Example

In this example we will change the buffering type in the factor command, assuming that factor uses stdio for stdout buffering.

If IO.pipe is used instead of PTY.open, this code deadlocks because factor’s stdout is fully buffered.

# start by requiring the standard library PTY
require 'pty'

master, slave = PTY.open
read, write = IO.pipe
pid = spawn("factor", :in=>read, :out=>slave)
read.close     # we dont need the read
slave.close    # or the slave

# pipe "42" to the factor command
write.puts "42"
# output the response from factor
p master.gets #=> "42: 2 3 7\n"

# pipe "144" to factor and print out the response
write.puts "144"
p master.gets #=> "144: 2 2 2 2 3 3\n"
write.close # close the pipe

# The result of read operation when pty slave is closed is platform
# dependent.
ret = begin
        master.gets     # FreeBSD returns nil.
      rescue Errno::EIO # GNU/Linux raises EIO.
        nil
      end
p ret #=> nil

License

C) Copyright 1998 by Akinori Ito.

This software may be redistributed freely for this purpose, in full
or in part, provided that this entire copyright notice is included
on any copies of this software and applications and derivations thereof.

This software is provided on an "as is" basis, without warranty of any
kind, either expressed or implied, as to any matter including, but not
limited to warranty of fitness of purpose, or merchantability, or
results obtained from use of this software.

The Base64 module provides for the encoding (encode64, strict_encode64, urlsafe_encode64) and decoding (decode64, strict_decode64, urlsafe_decode64) of binary data using a Base64 representation.

Example

A simple encoding and decoding.

require "base64"

enc   = Base64.encode64('Send reinforcements')
                    # -> "U2VuZCByZWluZm9yY2VtZW50cw==\n"
plain = Base64.decode64(enc)
                    # -> "Send reinforcements"

The purpose of using base64 to encode data is that it translates any binary data into purely printable characters.

The Benchmark module provides methods to measure and report the time used to execute Ruby code.

The result:

              user     system      total        real
for:      1.010000   0.000000   1.010000 (  1.015688)
times:    1.000000   0.000000   1.000000 (  1.003611)
upto:     1.030000   0.000000   1.030000 (  1.028098)

fileutils.rb

Copyright © 2000-2007 Minero Aoki

This program is free software. You can distribute/modify this program under the same terms of ruby.

module FileUtils

Namespace for several file utility methods for copying, moving, removing, etc.

Module Functions

require 'fileutils'

FileUtils.cd(dir, options)
FileUtils.cd(dir, options) {|dir| block }
FileUtils.pwd()
FileUtils.mkdir(dir, options)
FileUtils.mkdir(list, options)
FileUtils.mkdir_p(dir, options)
FileUtils.mkdir_p(list, options)
FileUtils.rmdir(dir, options)
FileUtils.rmdir(list, options)
FileUtils.ln(target, link, options)
FileUtils.ln(targets, dir, options)
FileUtils.ln_s(target, link, options)
FileUtils.ln_s(targets, dir, options)
FileUtils.ln_sf(target, link, options)
FileUtils.cp(src, dest, options)
FileUtils.cp(list, dir, options)
FileUtils.cp_r(src, dest, options)
FileUtils.cp_r(list, dir, options)
FileUtils.mv(src, dest, options)
FileUtils.mv(list, dir, options)
FileUtils.rm(list, options)
FileUtils.rm_r(list, options)
FileUtils.rm_rf(list, options)
FileUtils.install(src, dest, options)
FileUtils.chmod(mode, list, options)
FileUtils.chmod_R(mode, list, options)
FileUtils.chown(user, group, list, options)
FileUtils.chown_R(user, group, list, options)
FileUtils.touch(list, options)

The options parameter is a hash of options, taken from the list :force, :noop, :preserve, and :verbose. :noop means that no changes are made. The other three are obvious. Each method documents the options that it honours.

All methods that have the concept of a “source” file or directory can take either one file or a list of files in that argument. See the method documentation for examples.

There are some ‘low level’ methods, which do not accept any option:

FileUtils.copy_entry(src, dest, preserve = false, dereference = false)
FileUtils.copy_file(src, dest, preserve = false, dereference = true)
FileUtils.copy_stream(srcstream, deststream)
FileUtils.remove_entry(path, force = false)
FileUtils.remove_entry_secure(path, force = false)
FileUtils.remove_file(path, force = false)
FileUtils.compare_file(path_a, path_b)
FileUtils.compare_stream(stream_a, stream_b)
FileUtils.uptodate?(file, cmp_list)

module FileUtils::Verbose

This module has all methods of FileUtils module, but it outputs messages before acting. This equates to passing the :verbose flag to methods in FileUtils.

module FileUtils::NoWrite

This module has all methods of FileUtils module, but never changes files/directories. This equates to passing the :noop flag to methods in FileUtils.

module FileUtils::DryRun

This module has all methods of FileUtils module, but never changes files/directories. This equates to passing the :noop and :verbose flags to methods in FileUtils.

The Forwardable module provides delegation of specified methods to a designated object, using the methods def_delegator and def_delegators.

For example, say you have a class RecordCollection which contains an array @records. You could provide the lookup method record_number(), which simply calls [] on the @records array, like this:

require 'forwardable'

class RecordCollection
  attr_accessor :records
  extend Forwardable
  def_delegator :@records, :[], :record_number
end

We can use the lookup method like so:

r = RecordCollection.new
r.records = [4,5,6]
r.record_number(0)  # => 4

Further, if you wish to provide the methods size, <<, and map, all of which delegate to @records, this is how you can do it:

class RecordCollection # re-open RecordCollection class
  def_delegators :@records, :size, :<<, :map
end

r = RecordCollection.new
r.records = [1,2,3]
r.record_number(0)   # => 1
r.size               # => 3
r << 4               # => [1, 2, 3, 4]
r.map { |x| x * 2 }  # => [2, 4, 6, 8]

You can even extend regular objects with Forwardable.

my_hash = Hash.new
my_hash.extend Forwardable              # prepare object for delegation
my_hash.def_delegator "STDOUT", "puts"  # add delegation for STDOUT.puts()
my_hash.puts "Howdy!"

Another example

We want to rely on what has come before obviously, but with delegation we can take just the methods we need and even rename them as appropriate. In many cases this is preferable to inheritance, which gives us the entire old interface, even if much of it isn’t needed.

class Queue
  extend Forwardable

  def initialize
    @q = [ ]    # prepare delegate object
  end

  # setup preferred interface, enq() and deq()...
  def_delegator :@q, :push, :enq
  def_delegator :@q, :shift, :deq

  # support some general Array methods that fit Queues well
  def_delegators :@q, :clear, :first, :push, :shift, :size
end

q = Queue.new
q.enq 1, 2, 3, 4, 5
q.push 6

q.shift    # => 1
while q.size > 0
  puts q.deq
end

q.enq "Ruby", "Perl", "Python"
puts q.first
q.clear
puts q.first

This should output:

2
3
4
5
6
Ruby
nil

Notes

Be advised, RDoc will not detect delegated methods.

forwardable.rb provides single-method delegation via the def_delegator and def_delegators methods. For full-class delegation via DelegateClass, see delegate.rb.

SingleForwardable can be used to setup delegation at the object level as well.

printer = String.new
printer.extend SingleForwardable        # prepare object for delegation
printer.def_delegator "STDOUT", "puts"  # add delegation for STDOUT.puts()
printer.puts "Howdy!"

Also, SingleForwardable can be used to set up delegation for a Class or Module.

class Implementation
  def self.service
    puts "serviced!"
  end
end

module Facade
  extend SingleForwardable
  def_delegator :Implementation, :service
end

Facade.service #=> serviced!

If you want to use both Forwardable and SingleForwardable, you can use methods def_instance_delegator and def_single_delegator, etc.

In concurrent programming, a monitor is an object or module intended to be used safely by more than one thread. The defining characteristic of a monitor is that its methods are executed with mutual exclusion. That is, at each point in time, at most one thread may be executing any of its methods. This mutual exclusion greatly simplifies reasoning about the implementation of monitors compared to reasoning about parallel code that updates a data structure.

You can read more about the general principles on the Wikipedia page for Monitors

Examples

Simple object.extend

require 'monitor.rb'

buf = []
buf.extend(MonitorMixin)
empty_cond = buf.new_cond

# consumer
Thread.start do
  loop do
    buf.synchronize do
      empty_cond.wait_while { buf.empty? }
      print buf.shift
    end
  end
end

# producer
while line = ARGF.gets
  buf.synchronize do
    buf.push(line)
    empty_cond.signal
  end
end

The consumer thread waits for the producer thread to push a line to buf while buf.empty?. The producer thread (main thread) reads a line from ARGF and pushes it into buf then calls empty_cond.signal to notify the consumer thread of new data.

Simple Class include

require 'monitor'

class SynchronizedArray < Array

  include MonitorMixin

  def initialize(*args)
    super(*args)
  end

  alias :old_shift :shift
  alias :old_unshift :unshift

  def shift(n=1)
    self.synchronize do
      self.old_shift(n)
    end
  end

  def unshift(item)
    self.synchronize do
      self.old_unshift(item)
    end
  end

  # other methods ...
end

SynchronizedArray implements an Array with synchronized access to items. This Class is implemented as subclass of Array which includes the MonitorMixin module.

OpenURI is an easy-to-use wrapper for Net::HTTP, Net::HTTPS and Net::FTP.

Example

It is possible to open an http, https or ftp URL as though it were a file:

open("http://www.ruby-lang.org/") {|f|
  f.each_line {|line| p line}
}

The opened file has several getter methods for its meta-information, as follows, since it is extended by OpenURI::Meta.

open("http://www.ruby-lang.org/en") {|f|
  f.each_line {|line| p line}
  p f.base_uri         # <URI::HTTP:0x40e6ef2 URL:http://www.ruby-lang.org/en/>
  p f.content_type     # "text/html"
  p f.charset          # "iso-8859-1"
  p f.content_encoding # []
  p f.last_modified    # Thu Dec 05 02:45:02 UTC 2002
}

Additional header fields can be specified by an optional hash argument.

open("http://www.ruby-lang.org/en/",
  "User-Agent" => "Ruby/#{RUBY_VERSION}",
  "From" => "foo@bar.invalid",
  "Referer" => "http://www.ruby-lang.org/") {|f|
  # ...
}

The environment variables such as http_proxy, https_proxy and ftp_proxy are in effect by default. Here we disable proxy:

open("http://www.ruby-lang.org/en/", :proxy => nil) {|f|
  # ...
}

See OpenURI::OpenRead.open and Kernel#open for more on available options.

URI objects can be opened in a similar way.

uri = URI.parse("http://www.ruby-lang.org/en/")
uri.open {|f|
  # ...
}

URI objects can be read directly. The returned string is also extended by OpenURI::Meta.

str = uri.read
p str.base_uri
Author

Tanaka Akira <akr@m17n.org>

Open3 grants you access to stdin, stdout, stderr and a thread to wait for the child process when running another program. You can specify various attributes, redirections, current directory, etc., of the program in the same way as for Process.spawn.

Profile provides a way to Profile your Ruby application.

Profiling your program is a way of determining which methods are called and how long each method takes to complete. This way you can detect which methods are possible bottlenecks.

Profiling your program will slow down your execution time considerably, so activate it only when you need it. Don’t confuse benchmarking with profiling.

There are two ways to activate Profiling:

Command line

Run your Ruby script with -rprofile:

ruby -rprofile example.rb

If you’re profiling an executable in your $PATH you can use ruby -S:

ruby -rprofile -S some_executable

From code

Just require ‘profile’:

require 'profile'

def slow_method
  5000.times do
    9999999999999999*999999999
  end
end

def fast_method
  5000.times do
    9999999999999999+999999999
  end
end

slow_method
fast_method

The output in both cases is a report when the execution is over:

ruby -rprofile example.rb

  %   cumulative   self              self     total
 time   seconds   seconds    calls  ms/call  ms/call  name
 68.42     0.13      0.13        2    65.00    95.00  Integer#times
 15.79     0.16      0.03     5000     0.01     0.01  Fixnum#*
 15.79     0.19      0.03     5000     0.01     0.01  Fixnum#+
  0.00     0.19      0.00        2     0.00     0.00  IO#set_encoding
  0.00     0.19      0.00        1     0.00   100.00  Object#slow_method
  0.00     0.19      0.00        2     0.00     0.00  Module#method_added
  0.00     0.19      0.00        1     0.00    90.00  Object#fast_method
  0.00     0.19      0.00        1     0.00   190.00  #toplevel

RSS

RSS reading and writing

Really Simple Syndication (RSS) is a family of formats that describe ‘feeds,’ specially constructed XML documents that allow an interested person to subscribe and receive updates from a particular web service. This portion of the standard library provides tooling to read and create these feeds.

The standard library supports RSS 0.91, 1.0, 2.0, and Atom, a related format. Here are some links to the standards documents for these formats:

Consuming RSS

If you’d like to read someone’s RSS feed with your Ruby code, you’ve come to the right place. It’s really easy to do this, but we’ll need the help of open-uri:

require 'rss'
require 'open-uri'

url = 'http://www.ruby-lang.org/en/feeds/news.rss'
open(url) do |rss|
  feed = RSS::Parser.parse(rss)
  puts "Title: #{feed.channel.title}"
  feed.items.each do |item|
    puts "Item: #{item.title}"
  end
end

As you can see, the workhorse is RSS::Parser#parse, which takes the source of the feed and a parameter that performs validation on the feed. We get back an object that has all of the data from our feed, accessible through methods. This example shows getting the title out of the channel element, and looping through the list of items.

Producing RSS

Producing our own RSS feeds is easy as well. Let’s make a very basic feed:

require "rss"

rss = RSS::Maker.make("atom") do |maker|
  maker.channel.author = "matz"
  maker.channel.updated = Time.now.to_s
  maker.channel.about = "http://www.ruby-lang.org/en/feeds/news.rss"
  maker.channel.title = "Example Feed"

  maker.items.new_item do |item|
    item.link = "http://www.ruby-lang.org/en/news/2010/12/25/ruby-1-9-2-p136-is-released/"
    item.title = "Ruby 1.9.2-p136 is released"
    item.updated = Time.now.to_s
  end
end

puts rss

As you can see, this is a very Builder-like DSL. This code will spit out an Atom feed with one item. If we needed a second item, we’d make another block with maker.items.new_item and build a second one.

Copyright © 2003-2007 Kouhei Sutou <kou@cozmixng.org>

You can redistribute it and/or modify it under the same terms as Ruby.

There is an additional tutorial by the author of RSS at: www.cozmixng.org/~rwiki/?cmd=view;name=RSS+Parser%3A%3ATutorial.en

The Singleton module implements the Singleton pattern.

Usage

To use Singleton, include the module in your class.

class Klass
   include Singleton
   # ...
end

This ensures that only one instance of Klass can be created.

a,b  = Klass.instance, Klass.instance

a == b
# => true

Klass.new
# => NoMethodError - new is private ...

The instance is created at upon the first call of Klass.instance().

class OtherKlass
  include Singleton
  # ...
end

ObjectSpace.each_object(OtherKlass){}
# => 0

OtherKlass.instance
ObjectSpace.each_object(OtherKlass){}
# => 1

This behavior is preserved under inheritance and cloning.

Implementation

This above is achieved by:

Singleton and Marshal

By default Singleton’s _dump(depth) returns the empty string. Marshalling by default will strip state information, e.g. instance variables and taint state, from the instance. Classes using Singleton can provide custom _load(str) and _dump(depth) methods to retain some of the previous state of the instance.

require 'singleton'

class Example
  include Singleton
  attr_accessor :keep, :strip
  def _dump(depth)
    # this strips the @strip information from the instance
    Marshal.dump(@keep, depth)
  end

  def self._load(str)
    instance.keep = Marshal.load(str)
    instance
  end
end

a = Example.instance
a.keep = "keep this"
a.strip = "get rid of this"
a.taint

stored_state = Marshal.dump(a)

a.keep = nil
a.strip = nil
b = Marshal.load(stored_state)
p a == b  #  => true
p a.keep  #  => "keep this"
p a.strip #  => nil

Timeout long-running blocks

Synopsis

require 'timeout'
status = Timeout::timeout(5) {
  # Something that should be interrupted if it takes more than 5 seconds...
}

Description

Timeout provides a way to auto-terminate a potentially long-running operation if it hasn’t finished in a fixed amount of time.

Previous versions didn’t use a module for namespacing, however timeout is provided for backwards compatibility. You should prefer Timeout#timeout instead.

Copyright

© 2000 Network Applied Communication Laboratory, Inc.

Copyright

© 2000 Information-technology Promotion Agency, Japan

Error raised when a response from the server is non-parseable.

Search took: 21ms  ·  Total Results: 4130