Returns the number of microseconds for time.
t = Time.now #=> 2007-11-19 08:03:26 -0600 "%10.6f" % t.to_f #=> "1195481006.775195" t.usec #=> 775195
Returns the number of nanoseconds for time.
t = Time.now #=> 2007-11-17 15:18:03 +0900 "%10.9f" % t.to_f #=> "1195280283.536151409" t.nsec #=> 536151406
The lowest digits of to_f
and nsec
are different because IEEE 754 double is not accurate enough to represent the exact number of nanoseconds since the Epoch.
The more accurate value is returned by nsec
.
Calls the block once for each [key, value] pair in the database. Returns self.
Returns a hash, that will be turned into a JSON
object and represent this object.
Yields the name and value of each struct member in order. If no block is given an enumerator is returned.
Customer = Struct.new(:name, :address, :zip) joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) joe.each_pair {|name, value| puts("#{name} => #{value}") }
Produces:
name => Joe Smith address => 123 Maple, Anytown NC zip => 12345
IO.copy_stream
copies src to dst. src and dst is either a filename or an IO
.
This method returns the number of bytes copied.
If optional arguments are not given, the start position of the copy is the beginning of the filename or the current file offset of the IO
. The end position of the copy is the end of file.
If copy_length is given, No more than copy_length bytes are copied.
If src_offset is given, it specifies the start position of the copy.
When src_offset is specified and src is an IO
, IO.copy_stream
doesn’t move the current file offset.
Calls the given block once for each character in ios, passing the character as an argument. The stream must be opened for reading or an IOError
will be raised.
If no block is given, an enumerator is returned instead.
f = File.new("testfile") f.each_char {|c| print c, ' ' } #=> #<File:testfile>
Returns ios.
Closes the read end of a duplex I/O stream (i.e., one that contains both a read and a write stream, such as a pipe). Will raise an IOError
if the stream is not duplexed.
f = IO.popen("/bin/sh","r+") f.close_read f.readlines
produces:
prog.rb:3:in `readlines': not opened for reading (IOError) from prog.rb:3
Closes the write end of a duplex I/O stream (i.e., one that contains both a read and a write stream, such as a pipe). Will raise an IOError
if the stream is not duplexed.
f = IO.popen("/bin/sh","r+") f.close_write f.print "nowhere"
produces:
prog.rb:3:in `write': not opened for writing (IOError) from prog.rb:3:in `print' from prog.rb:3
Returns the Encoding
object that represents the encoding of the file. If io is in write mode and no encoding is specified, returns nil
.
Returns the Encoding
of the internal string if conversion is specified. Otherwise returns nil
.
If single argument is specified, read string from io is tagged with the encoding specified. If encoding is a colon separated two encoding names “A:B”, the read string is converted from encoding A (external encoding) to encoding B (internal encoding), then tagged with B. If two arguments are specified, those must be encoding objects or encoding names, and the first one is the external encoding, and the second one is the internal encoding. If the external encoding and the internal encoding is specified, optional hash argument specify the conversion option.
Reads at most maxlen bytes from ios using the read(2) system call after O_NONBLOCK is set for the underlying file descriptor.
If the optional outbuf argument is present, it must reference a String, which will receive the data. The outbuf will contain only the received data after the method call even if it is not empty at the beginning.
read_nonblock
just calls the read(2) system call. It causes all errors the read(2) system call causes: Errno::EWOULDBLOCK, Errno::EINTR, etc. The caller should care such errors.
If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by IO::WaitReadable
. So IO::WaitReadable
can be used to rescue the exceptions for retrying read_nonblock.
read_nonblock
causes EOFError
on EOF.
If the read byte buffer is not empty, read_nonblock
reads from the buffer like readpartial. In this case, the read(2) system call is not called.
When read_nonblock
raises an exception kind of IO::WaitReadable
, read_nonblock
should not be called until io is readable for avoiding busy loop. This can be done as follows.
# emulates blocking read (readpartial). begin result = io.read_nonblock(maxlen) rescue IO::WaitReadable IO.select([io]) retry end
Although IO#read_nonblock
doesn’t raise IO::WaitWritable
. OpenSSL::Buffering#read_nonblock
can raise IO::WaitWritable
. If IO
and SSL should be used polymorphically, IO::WaitWritable
should be rescued too. See the document of OpenSSL::Buffering#read_nonblock
for sample code.
Note that this method is identical to readpartial except the non-blocking flag is set.
By specifying a keyword argument exception to false
, you can indicate that read_nonblock
should not raise an IO::WaitReadable
exception, but return the symbol :wait_readable
instead. At EOF, it will return nil instead of raising EOFError
.
Writes the given string to ios using the write(2) system call after O_NONBLOCK is set for the underlying file descriptor.
It returns the number of bytes written.
write_nonblock
just calls the write(2) system call. It causes all errors the write(2) system call causes: Errno::EWOULDBLOCK, Errno::EINTR, etc. The result may also be smaller than string.length (partial write). The caller should care such errors and partial write.
If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by IO::WaitWritable
. So IO::WaitWritable
can be used to rescue the exceptions for retrying write_nonblock.
# Creates a pipe. r, w = IO.pipe # write_nonblock writes only 65536 bytes and return 65536. # (The pipe size is 65536 bytes on this environment.) s = "a" * 100000 p w.write_nonblock(s) #=> 65536 # write_nonblock cannot write a byte and raise EWOULDBLOCK (EAGAIN). p w.write_nonblock("b") # Resource temporarily unavailable (Errno::EAGAIN)
If the write buffer is not empty, it is flushed at first.
When write_nonblock
raises an exception kind of IO::WaitWritable
, write_nonblock
should not be called until io is writable for avoiding busy loop. This can be done as follows.
begin result = io.write_nonblock(string) rescue IO::WaitWritable, Errno::EINTR IO.select(nil, [io]) retry end
Note that this doesn’t guarantee to write all data in string. The length written is reported as result and it should be checked later.
On some platforms such as Windows, write_nonblock
is not supported according to the kind of the IO
object. In such cases, write_nonblock
raises Errno::EBADF
.
By specifying a keyword argument exception to false
, you can indicate that write_nonblock
should not raise an IO::WaitWritable
exception, but return the symbol :wait_writable
instead.
Executes block for each key in the database, passing the key and the corresponding value as a parameter.
Returns a hash, that will be turned into a JSON
object and represent this object.
Stores class name (OpenStruct
) with this struct’s values v
as a JSON
string.
Yields all attributes (as symbols) along with the corresponding values or returns an enumerator if no block is given.
require "ostruct" data = OpenStruct.new("country" => "Australia", :capital => "Canberra") data.each_pair.to_a # => [[:country, "Australia"], [:capital, "Canberra"]]
Returns a hash, that will be turned into a JSON
object and represent this object.
Stores class name (Range
) with JSON
array of arguments a
which include first
(integer), last
(integer), and exclude_end?
(boolean) as JSON
string.