Returns the destination encoding name as a string.
Returns the destination encoding name as a string.
Called with encoding
when the YAML stream starts. This method is called once per stream. A stream may contain multiple documents.
See the constants in Psych::Parser
for the possible values of encoding
.
Called when a map starts.
anchor
is the anchor associated with the map or nil
. tag
is the tag associated with the map or nil
. implicit
is a boolean indicating whether or not the map was implicitly started. style
is an integer indicating the mapping style.
See the constants in Psych::Nodes::Mapping
for the possible values of style
.
Here is a YAML document that exercises most of the possible ways this method can be called:
--- k: !!map { hello: world } v: &pewpew hello: world
The above YAML document consists of three maps, an outer map that contains two inner maps. Below is a matrix of the parameters sent in order to represent these three maps:
# anchor tag implicit style [nil, nil, true, 1 ] [nil, "tag:yaml.org,2002:map", false, 2 ] ["pewpew", nil, true, 1 ]
Method
contributed by Henrik Martensson
Looks up RingServers waiting timeout
seconds. RingServers will be given block
as a callback, which will be called with the remote TupleSpace
.
Install generated indices into the destination directory.
primitive_errinfo
returns important information regarding the last error as a 5-element array:
[result, enc1, enc2, error_bytes, readagain_bytes]
result is the last result of primitive_convert.
Other elements are only meaningful when result is :invalid_byte_sequence, :incomplete_input or :undefined_conversion.
enc1 and enc2 indicate a conversion step as a pair of strings. For example, a converter from EUC-JP to ISO-8859-1 converts a string as follows: EUC-JP -> UTF-8 -> ISO-8859-1. So [enc1, enc2] is either [“EUC-JP”, “UTF-8”] or [“UTF-8”, “ISO-8859-1”].
error_bytes and readagain_bytes indicate the byte sequences which caused the error. error_bytes is discarded portion. readagain_bytes is buffered portion which is read again on next conversion.
Example:
# \xff is invalid as EUC-JP. ec = Encoding::Converter.new("EUC-JP", "Shift_JIS") ec.primitive_convert(src="\xff", dst="", nil, 10) p ec.primitive_errinfo #=> [:invalid_byte_sequence, "EUC-JP", "UTF-8", "\xFF", ""] # HIRAGANA LETTER A (\xa4\xa2 in EUC-JP) is not representable in ISO-8859-1. # Since this error is occur in UTF-8 to ISO-8859-1 conversion, # error_bytes is HIRAGANA LETTER A in UTF-8 (\xE3\x81\x82). ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1") ec.primitive_convert(src="\xa4\xa2", dst="", nil, 10) p ec.primitive_errinfo #=> [:undefined_conversion, "UTF-8", "ISO-8859-1", "\xE3\x81\x82", ""] # partial character is invalid ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1") ec.primitive_convert(src="\xa4", dst="", nil, 10) p ec.primitive_errinfo #=> [:incomplete_input, "EUC-JP", "UTF-8", "\xA4", ""] # Encoding::Converter::PARTIAL_INPUT prevents invalid errors by # partial characters. ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1") ec.primitive_convert(src="\xa4", dst="", nil, 10, Encoding::Converter::PARTIAL_INPUT) p ec.primitive_errinfo #=> [:source_buffer_empty, nil, nil, nil, nil] # \xd8\x00\x00@ is invalid as UTF-16BE because # no low surrogate after high surrogate (\xd8\x00). # It is detected by 3rd byte (\00) which is part of next character. # So the high surrogate (\xd8\x00) is discarded and # the 3rd byte is read again later. # Since the byte is buffered in ec, it is dropped from src. ec = Encoding::Converter.new("UTF-16BE", "UTF-8") ec.primitive_convert(src="\xd8\x00\x00@", dst="", nil, 10) p ec.primitive_errinfo #=> [:invalid_byte_sequence, "UTF-16BE", "UTF-8", "\xD8\x00", "\x00"] p src #=> "@" # Similar to UTF-16BE, \x00\xd8@\x00 is invalid as UTF-16LE. # The problem is detected by 4th byte. ec = Encoding::Converter.new("UTF-16LE", "UTF-8") ec.primitive_convert(src="\x00\xd8@\x00", dst="", nil, 10) p ec.primitive_errinfo #=> [:invalid_byte_sequence, "UTF-16LE", "UTF-8", "\x00\xD8", "@\x00"] p src #=> ""
Temporarily turn off warnings. Intended for tests only.
Temporarily turn off warnings. Intended for tests only.
Default options for the gem install command.
Content: [ String text ]
Returns value specified by the member name of VT_RECORD OLE object. If the member name is not correct, KeyError
exception is raised. If you can’t access member variable of VT_RECORD OLE object directly, use this method.
If COM server in VB.NET ComServer project is the following:
Imports System.Runtime.InteropServices Public Class ComClass Public Structure ComObject Public object_id As Ineger End Structure End Class
and Ruby Object
class has title attribute:
then accessing object_id of ComObject from Ruby is as the following:
srver = WIN32OLE.new('ComServer.ComClass') obj = WIN32OLE_RECORD.new('ComObject', server) # obj.object_id returns Ruby Object#object_id obj.ole_instance_variable_get(:object_id) # => nil
Sets value specified by the member name of VT_RECORD OLE object. If the member name is not correct, KeyError
exception is raised. If you can’t set value of member of VT_RECORD OLE object directly, use this method.
If COM server in VB.NET ComServer project is the following:
Imports System.Runtime.InteropServices Public Class ComClass <MarshalAs(UnmanagedType.BStr)> _ Public title As String Public cost As Integer End Class
then setting value of the ‘title’ member is as following:
srver = WIN32OLE.new('ComServer.ComClass') obj = WIN32OLE_RECORD.new('Book', server) obj.ole_instance_variable_set(:title, "The Ruby Book")
The iterator version of the strongly_connected_components
method. obj.each_strongly_connected_component
is similar to obj.strongly_connected_components.each
, but modification of obj during the iteration may lead to unexpected results.
each_strongly_connected_component
returns nil
.
class G include TSort def initialize(g) @g = g end def tsort_each_child(n, &b) @g[n].each(&b) end def tsort_each_node(&b) @g.each_key(&b) end end graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) graph.each_strongly_connected_component {|scc| p scc } #=> [4] # [2] # [3] # [1] graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) graph.each_strongly_connected_component {|scc| p scc } #=> [4] # [2, 3] # [1]