Results for: "Pathname"

Generic exception class of the Timestamp module.

TimeStamp struct

Handles “Negotiate” type authentication. Geared towards authenticating with a proxy server over HTTP

Class for representing HTTP method PATCH:

require 'net/http'
uri = URI('http://example.com')
hostname = uri.hostname # => "example.com"
uri.path = '/posts'
req = Net::HTTP::Patch.new(uri) # => #<Net::HTTP::Patch PATCH>
req.body = '{"title": "foo","body": "bar","userId": 1}'
req.content_type = 'application/json'
res = Net::HTTP.start(hostname) do |http|
  http.request(req)
end

See Request Headers.

Properties:

Related:

Class for representing WebDAV method PROPPATCH:

require 'net/http'
uri = URI('http://example.com')
hostname = uri.hostname # => "example.com"
req = Net::HTTP::Proppatch.new(uri) # => #<Net::HTTP::Proppatch PROPPATCH>
res = Net::HTTP.start(hostname) do |http|
  http.request(req)
end

See Request Headers.

Related:

Switch that can omit argument.

If we have an identifier that follows a method name like:

def foo bar

then Ripper will mark bar as END|LABEL if there is a local in a parent scope named bar because it hasn’t pushed the local table yet. We do this more accurately, so we need to allow comparing against both END and END|LABEL.

No documentation available

SvcParams for service binding RRs. [RFC9460]

Base class for SvcParam. [RFC9460]

No documentation available
No documentation available
No documentation available
No documentation available
No documentation available

Patterns used to parse URI’s

Class that parses String’s into URI’s.

It contains a Hash set of patterns and Regexp’s that match and validate.

“dohpath” SvcParamDNS over HTTPS path template [RFC9461]

Domain Name resource abstract class.

The canonical name for an alias.

This is the JSON parser implemented as a C extension. It can be configured to be used by setting

JSON.parser = JSON::Ext::Parser

with the method parser= in JSON.

No documentation available

Implementation of an X.509 certificate as specified in RFC 5280. Provides access to a certificate’s attributes and allows certificates to be read from a string, but also supports the creation of new certificates from scratch.

Reading a certificate from a file

Certificate is capable of handling DER-encoded certificates and certificates encoded in OpenSSL’s PEM format.

raw = File.binread "cert.cer" # DER- or PEM-encoded
certificate = OpenSSL::X509::Certificate.new raw

Saving a certificate to a file

A certificate may be encoded in DER format

cert = ...
File.open("cert.cer", "wb") { |f| f.print cert.to_der }

or in PEM format

cert = ...
File.open("cert.pem", "wb") { |f| f.print cert.to_pem }

X.509 certificates are associated with a private/public key pair, typically a RSA, DSA or ECC key (see also OpenSSL::PKey::RSA, OpenSSL::PKey::DSA and OpenSSL::PKey::EC), the public key itself is stored within the certificate and can be accessed in form of an OpenSSL::PKey. Certificates are typically used to be able to associate some form of identity with a key pair, for example web servers serving pages over HTTPs use certificates to authenticate themselves to the user.

The public key infrastructure (PKI) model relies on trusted certificate authorities (“root CAs”) that issue these certificates, so that end users need to base their trust just on a selected few authorities that themselves again vouch for subordinate CAs issuing their certificates to end users.

The OpenSSL::X509 module provides the tools to set up an independent PKI, similar to scenarios where the ‘openssl’ command line tool is used for issuing certificates in a private PKI.

Creating a root CA certificate and an end-entity certificate

First, we need to create a “self-signed” root certificate. To do so, we need to generate a key first. Please note that the choice of “1” as a serial number is considered a security flaw for real certificates. Secure choices are integers in the two-digit byte range and ideally not sequential but secure random numbers, steps omitted here to keep the example concise.

root_key = OpenSSL::PKey::RSA.new 2048 # the CA's public/private key
root_ca = OpenSSL::X509::Certificate.new
root_ca.version = 2 # cf. RFC 5280 - to make it a "v3" certificate
root_ca.serial = 1
root_ca.subject = OpenSSL::X509::Name.parse "/DC=org/DC=ruby-lang/CN=Ruby CA"
root_ca.issuer = root_ca.subject # root CA's are "self-signed"
root_ca.public_key = root_key.public_key
root_ca.not_before = Time.now
root_ca.not_after = root_ca.not_before + 2 * 365 * 24 * 60 * 60 # 2 years validity
ef = OpenSSL::X509::ExtensionFactory.new
ef.subject_certificate = root_ca
ef.issuer_certificate = root_ca
root_ca.add_extension(ef.create_extension("basicConstraints","CA:TRUE",true))
root_ca.add_extension(ef.create_extension("keyUsage","keyCertSign, cRLSign", true))
root_ca.add_extension(ef.create_extension("subjectKeyIdentifier","hash",false))
root_ca.add_extension(ef.create_extension("authorityKeyIdentifier","keyid:always",false))
root_ca.sign(root_key, OpenSSL::Digest.new('SHA256'))

The next step is to create the end-entity certificate using the root CA certificate.

key = OpenSSL::PKey::RSA.new 2048
cert = OpenSSL::X509::Certificate.new
cert.version = 2
cert.serial = 2
cert.subject = OpenSSL::X509::Name.parse "/DC=org/DC=ruby-lang/CN=Ruby certificate"
cert.issuer = root_ca.subject # root CA is the issuer
cert.public_key = key.public_key
cert.not_before = Time.now
cert.not_after = cert.not_before + 1 * 365 * 24 * 60 * 60 # 1 years validity
ef = OpenSSL::X509::ExtensionFactory.new
ef.subject_certificate = cert
ef.issuer_certificate = root_ca
cert.add_extension(ef.create_extension("keyUsage","digitalSignature", true))
cert.add_extension(ef.create_extension("subjectKeyIdentifier","hash",false))
cert.sign(root_key, OpenSSL::Digest.new('SHA256'))

The top-level class representing any ASN.1 object. When parsed by ASN1.decode, tagged values are always represented by an instance of ASN1Data.

The role of ASN1Data for parsing tagged values

When encoding an ASN.1 type it is inherently clear what original type (e.g. INTEGER, OCTET STRING etc.) this value has, regardless of its tagging. But opposed to the time an ASN.1 type is to be encoded, when parsing them it is not possible to deduce the “real type” of tagged values. This is why tagged values are generally parsed into ASN1Data instances, but with a different outcome for implicit and explicit tagging.

Example of a parsed implicitly tagged value

An implicitly 1-tagged INTEGER value will be parsed as an ASN1Data with

This implies that a subsequent decoding step is required to completely decode implicitly tagged values.

Example of a parsed explicitly tagged value

An explicitly 1-tagged INTEGER value will be parsed as an ASN1Data with

Example - Decoding an implicitly tagged INTEGER

int = OpenSSL::ASN1::Integer.new(1, 0, :IMPLICIT) # implicit 0-tagged
seq = OpenSSL::ASN1::Sequence.new( [int] )
der = seq.to_der
asn1 = OpenSSL::ASN1.decode(der)
# pp asn1 => #<OpenSSL::ASN1::Sequence:0x87326e0
#              @indefinite_length=false,
#              @tag=16,
#              @tag_class=:UNIVERSAL,
#              @tagging=nil,
#              @value=
#                [#<OpenSSL::ASN1::ASN1Data:0x87326f4
#                   @indefinite_length=false,
#                   @tag=0,
#                   @tag_class=:CONTEXT_SPECIFIC,
#                   @value="\x01">]>
raw_int = asn1.value[0]
# manually rewrite tag and tag class to make it an UNIVERSAL value
raw_int.tag = OpenSSL::ASN1::INTEGER
raw_int.tag_class = :UNIVERSAL
int2 = OpenSSL::ASN1.decode(raw_int)
puts int2.value # => 1

Example - Decoding an explicitly tagged INTEGER

int = OpenSSL::ASN1::Integer.new(1, 0, :EXPLICIT) # explicit 0-tagged
seq = OpenSSL::ASN1::Sequence.new( [int] )
der = seq.to_der
asn1 = OpenSSL::ASN1.decode(der)
# pp asn1 => #<OpenSSL::ASN1::Sequence:0x87326e0
#              @indefinite_length=false,
#              @tag=16,
#              @tag_class=:UNIVERSAL,
#              @tagging=nil,
#              @value=
#                [#<OpenSSL::ASN1::ASN1Data:0x87326f4
#                   @indefinite_length=false,
#                   @tag=0,
#                   @tag_class=:CONTEXT_SPECIFIC,
#                   @value=
#                     [#<OpenSSL::ASN1::Integer:0x85bf308
#                        @indefinite_length=false,
#                        @tag=2,
#                        @tag_class=:UNIVERSAL
#                        @tagging=nil,
#                        @value=1>]>]>
int2 = asn1.value[0].value[0]
puts int2.value # => 1

An OpenSSL::OCSP::CertificateId identifies a certificate to the CA so that a status check can be performed.

Search took: 7ms  ·  Total Results: 2920