Results for: "module_function"

A concrete implementation of Delegator, this class provides the means to delegate all supported method calls to the object passed into the constructor and even to change the object being delegated to at a later time with __setobj__.

class User
  def born_on
    Date.new(1989, 9, 10)
  end
end

require 'delegate'

class UserDecorator < SimpleDelegator
  def birth_year
    born_on.year
  end
end

decorated_user = UserDecorator.new(User.new)
decorated_user.birth_year  #=> 1989
decorated_user.__getobj__  #=> #<User: ...>

A SimpleDelegator instance can take advantage of the fact that SimpleDelegator is a subclass of Delegator to call super to have methods called on the object being delegated to.

class SuperArray < SimpleDelegator
  def [](*args)
    super + 1
  end
end

SuperArray.new([1])[0]  #=> 2

Here’s a simple example that takes advantage of the fact that SimpleDelegator’s delegation object can be changed at any time.

class Stats
  def initialize
    @source = SimpleDelegator.new([])
  end

  def stats(records)
    @source.__setobj__(records)

    "Elements:  #{@source.size}\n" +
    " Non-Nil:  #{@source.compact.size}\n" +
    "  Unique:  #{@source.uniq.size}\n"
  end
end

s = Stats.new
puts s.stats(%w{James Edward Gray II})
puts
puts s.stats([1, 2, 3, nil, 4, 5, 1, 2])

Prints:

Elements:  4
 Non-Nil:  4
  Unique:  4

Elements:  8
 Non-Nil:  7
  Unique:  6

SingleForwardable can be used to setup delegation at the object level as well.

printer = String.new
printer.extend SingleForwardable        # prepare object for delegation
printer.def_delegator "STDOUT", "puts"  # add delegation for STDOUT.puts()
printer.puts "Howdy!"

Also, SingleForwardable can be used to set up delegation for a Class or Module.

class Implementation
  def self.service
    puts "serviced!"
  end
end

module Facade
  extend SingleForwardable
  def_delegator :Implementation, :service
end

Facade.service #=> serviced!

If you want to use both Forwardable and SingleForwardable, you can use methods def_instance_delegator and def_single_delegator, etc.

Potentially raised when a specification is validated.

No documentation available

The InstructionSequence class represents a compiled sequence of instructions for the Virtual Machine used in MRI. Not all implementations of Ruby may implement this class, and for the implementations that implement it, the methods defined and behavior of the methods can change in any version.

With it, you can get a handle to the instructions that make up a method or a proc, compile strings of Ruby code down to VM instructions, and disassemble instruction sequences to strings for easy inspection. It is mostly useful if you want to learn how YARV works, but it also lets you control various settings for the Ruby iseq compiler.

You can find the source for the VM instructions in insns.def in the Ruby source.

The instruction sequence results will almost certainly change as Ruby changes, so example output in this documentation may be different from what you see.

Of course, this class is MRI specific.

Response class for Non-Authoritative Information responses (status code 203).

The Non-Authoritative Information response indicates that the server is a transforming proxy (such as a Web accelerator) that received a 200 OK response from its origin, and is returning a modified version of the origin’s response.

References:

Mixin methods for –version and –platform Gem::Command options.

A pointer to a C union

Parent class for redirection (3xx) HTTP response classes.

A redirection response indicates the client must take additional action to complete the request.

References:

Response class for Proxy Authentication Required responses (status code 407).

The client must first authenticate itself with the proxy.

References:

Response class for Precondition Required responses (status code 428).

The origin server requires the request to be conditional.

References:

Response class for Network Authentication Required responses (status code 511).

The client needs to authenticate to gain network access.

References:

Raised by Gem::Resolver when a Gem::Dependency::Conflict reaches the toplevel. Indicates which dependencies were incompatible through conflict and conflicting_dependencies

Raised when attempting to uninstall a gem that isn’t in GEM_HOME.

No documentation available

Raised by the DependencyInstaller when a specific gem cannot be found

Raised by Encoding and String methods when a transcoding operation fails.

UserInteraction allows RubyGems to interact with the user through standard methods that can be replaced with more-specific UI methods for different displays.

Since UserInteraction dispatches to a concrete UI class you may need to reference other classes for specific behavior such as Gem::ConsoleUI or Gem::SilentUI.

Example:

class X
  include Gem::UserInteraction

  def get_answer
    n = ask("What is the meaning of life?")
  end
end

A base class for objects representing a C union

No documentation available

ResolutionError is the error class for socket name resolution.

No documentation available

Socket::Option represents a socket option used by BasicSocket#getsockopt and BasicSocket#setsockopt. A socket option contains the socket family, protocol level, option name optname and option value data.

No documentation available

Parent class for informational (1xx) HTTP response classes.

An informational response indicates that the request was received and understood.

References:

Search took: 4ms  ·  Total Results: 3609