Creates an option from the given parameters params
. See Parameters for New Options.
The block, if given, is the handler for the created option. When the option is encountered during command-line parsing, the block is called with the argument given for the option, if any. See Option Handlers.
Defines options which set in to options for keyword parameters of method.
Parameters for each keywords are given as elements of params.
Breaks the buffer into lines that are shorter than maxwidth
Returns the value of the local variable symbol
.
def foo a = 1 binding.local_variable_get(:a) #=> 1 binding.local_variable_get(:b) #=> NameError end
This method is the short version of the following code:
binding.eval("#{symbol}")
Set
local variable named symbol
as obj
.
def foo a = 1 bind = binding bind.local_variable_set(:a, 2) # set existing local variable `a' bind.local_variable_set(:b, 3) # create new local variable `b' # `b' exists only in binding p bind.local_variable_get(:a) #=> 2 p bind.local_variable_get(:b) #=> 3 p a #=> 2 p b #=> NameError end
This method behaves similarly to the following code:
binding.eval("#{symbol} = #{obj}")
if obj
can be dumped in Ruby
code.
If the correponding value is not set, yield a value with init_block and store the value in thread-safe manner. This method returns corresponding stored value.
(1..10).map{ Thread.new(it){|i| Ractor.store_if_absent(:s){ f(); i } #=> return stored value of key :s } }.map(&:value).uniq.size #=> 1 and f() is called only once
Returns the value of a thread local variable that has been set. Note that these are different than fiber local values. For fiber local values, please see Thread#[]
and Thread#[]=
.
Thread
local values are carried along with threads, and do not respect fibers. For example:
Thread.new { Thread.current.thread_variable_set("foo", "bar") # set a thread local Thread.current["foo"] = "bar" # set a fiber local Fiber.new { Fiber.yield [ Thread.current.thread_variable_get("foo"), # get the thread local Thread.current["foo"], # get the fiber local ] }.resume }.join.value # => ['bar', nil]
The value “bar” is returned for the thread local, where nil is returned for the fiber local. The fiber is executed in the same thread, so the thread local values are available.
Sets a thread local with key
to value
. Note that these are local to threads, and not to fibers. Please see Thread#thread_variable_get
and Thread#[]
for more information.
Establishes proc on thr as the handler for tracing, or disables tracing if the parameter is nil
.
Adds proc as a handler for tracing.
Establishes proc as the handler for tracing, or disables tracing if the parameter is nil
.
Note: this method is obsolete, please use TracePoint
instead.
proc takes up to six parameters:
an event name string
a filename string
a line number
a method name symbol, or nil
a binding, or nil
the class, module, or nil
proc is invoked whenever an event occurs.
Events are:
"c-call"
call a C-language routine
"c-return"
return from a C-language routine
"call"
call a Ruby
method
"class"
start a class or module definition
"end"
finish a class or module definition
"line"
execute code on a new line
"raise"
raise an exception
"return"
return from a Ruby
method
Tracing is disabled within the context of proc.
class Test def test a = 1 b = 2 end end set_trace_func proc { |event, file, line, id, binding, class_or_module| printf "%8s %s:%-2d %16p %14p\n", event, file, line, id, class_or_module } t = Test.new t.test
Produces:
c-return prog.rb:8 :set_trace_func Kernel line prog.rb:11 nil nil c-call prog.rb:11 :new Class c-call prog.rb:11 :initialize BasicObject c-return prog.rb:11 :initialize BasicObject c-return prog.rb:11 :new Class line prog.rb:12 nil nil call prog.rb:2 :test Test line prog.rb:3 :test Test line prog.rb:4 :test Test return prog.rb:5 :test Test
Invoke self.each
with *args
. With a block given, the block receives each element and its index; returns self
:
h = {} (1..4).each_with_index {|element, i| h[element] = i } # => 1..4 h # => {1=>0, 2=>1, 3=>2, 4=>3} h = {} %w[a b c d].each_with_index {|element, i| h[element] = i } # => ["a", "b", "c", "d"] h # => {"a"=>0, "b"=>1, "c"=>2, "d"=>3} a = [] h = {foo: 0, bar: 1, baz: 2} h.each_with_index {|element, i| a.push([i, element]) } # => {:foo=>0, :bar=>1, :baz=>2} a # => [[0, [:foo, 0]], [1, [:bar, 1]], [2, [:baz, 2]]]
With no block given, returns an Enumerator
.
Attempts to enter exclusive section. Returns false
if lock fails.
For backward compatibility
Starts tracing object allocations from the ObjectSpace
extension module.
For example:
require 'objspace' class C include ObjectSpace def foo trace_object_allocations do obj = Object.new p "#{allocation_sourcefile(obj)}:#{allocation_sourceline(obj)}" end end end C.new.foo #=> "objtrace.rb:8"
This example has included the ObjectSpace
module to make it easier to read, but you can also use the ::trace_object_allocations
notation (recommended).
Note that this feature introduces a huge performance decrease and huge memory consumption.
Return internal class of obj.
obj can be an instance of InternalObjectWrapper
.
Note that you should not use this method in your application.
obj can be an instance of InternalObjectWrapper
.
Note that you should not use this method in your application.
Quietly ensure the Gem
directory dir
contains all the proper subdirectories. If we can’t create a directory due to a permission problem, then we will silently continue.
If mode
is given, missing directories are created with this mode.
World-writable directories will never be created.
Returns the latest release-version specification for the gem name
.
Returns the latest release version of RubyGems.
Returns the version of the latest release-version of gem name
Glob pattern for require-able plugin suffixes.
Regexp
for require-able plugin suffixes.
Find
all ‘rubygems_plugin’ files in $LOAD_PATH and load them
Register a Gem::Specification
for default gem.
Two formats for the specification are supported:
MRI 2.0 style, where spec.files contains unprefixed require names. The spec’s filenames will be registered as-is.
New style, where spec.files contains files prefixed with paths from spec.require_paths. The prefixes are stripped before registering the spec’s filenames. Unprefixed files are omitted.