Results for: "optionparser"

Returns the superclass of class, or nil.

File.superclass          #=> IO
IO.superclass            #=> Object
Object.superclass        #=> BasicObject
class Foo; end
class Bar < Foo; end
Bar.superclass           #=> Foo

Returns nil when the given class does not have a parent class:

BasicObject.superclass   #=> nil

Returns an array of classes where the receiver is the direct superclass of the class, excluding singleton classes. The order of the returned array is not defined.

class A; end
class B < A; end
class C < B; end
class D < A; end

A.subclasses        #=> [D, B]
B.subclasses        #=> [C]
C.subclasses        #=> []

Anonymous subclasses (not associated with a constant) are returned, too:

c = Class.new(A)
A.subclasses        # => [#<Class:0x00007f003c77bd78>, D, B]

Note that the parent does not hold references to subclasses and doesn’t prevent them from being garbage collected. This means that the subclass might disappear when all references to it are dropped:

# drop the reference to subclass, it can be garbage-collected now
c = nil

A.subclasses
# It can be
#  => [#<Class:0x00007f003c77bd78>, D, B]
# ...or just
#  => [D, B]
# ...depending on whether garbage collector was run

Returns the bound receiver of the binding object.

Returns the number of mandatory arguments. If the block is declared to take no arguments, returns 0. If the block is known to take exactly n arguments, returns n. If the block has optional arguments, returns -n-1, where n is the number of mandatory arguments, with the exception for blocks that are not lambdas and have only a finite number of optional arguments; in this latter case, returns n. Keyword arguments will be considered as a single additional argument, that argument being mandatory if any keyword argument is mandatory. A proc with no argument declarations is the same as a block declaring || as its arguments.

proc {}.arity                  #=>  0
proc { || }.arity              #=>  0
proc { |a| }.arity             #=>  1
proc { |a, b| }.arity          #=>  2
proc { |a, b, c| }.arity       #=>  3
proc { |*a| }.arity            #=> -1
proc { |a, *b| }.arity         #=> -2
proc { |a, *b, c| }.arity      #=> -3
proc { |x:, y:, z:0| }.arity   #=>  1
proc { |*a, x:, y:0| }.arity   #=> -2

proc   { |a=0| }.arity         #=>  0
lambda { |a=0| }.arity         #=> -1
proc   { |a=0, b| }.arity      #=>  1
lambda { |a=0, b| }.arity      #=> -2
proc   { |a=0, b=0| }.arity    #=>  0
lambda { |a=0, b=0| }.arity    #=> -1
proc   { |a, b=0| }.arity      #=>  1
lambda { |a, b=0| }.arity      #=> -2
proc   { |(a, b), c=0| }.arity #=>  1
lambda { |(a, b), c=0| }.arity #=> -2
proc   { |a, x:0, y:0| }.arity #=>  1
lambda { |a, x:0, y:0| }.arity #=> -2

The reason this block was terminated: :break, :redo, :retry, :next, :return, or :noreason.

Returns a clone of this method.

class A
  def foo
    return "bar"
  end
end

m = A.new.method(:foo)
m.call # => "bar"
n = m.clone.call # => "bar"

Returns an indication of the number of arguments accepted by a method. Returns a nonnegative integer for methods that take a fixed number of arguments. For Ruby methods that take a variable number of arguments, returns -n-1, where n is the number of required arguments. Keyword arguments will be considered as a single additional argument, that argument being mandatory if any keyword argument is mandatory. For methods written in C, returns -1 if the call takes a variable number of arguments.

class C
  def one;    end
  def two(a); end
  def three(*a);  end
  def four(a, b); end
  def five(a, b, *c);    end
  def six(a, b, *c, &d); end
  def seven(a, b, x:0); end
  def eight(x:, y:); end
  def nine(x:, y:, **z); end
  def ten(*a, x:, y:); end
end
c = C.new
c.method(:one).arity     #=> 0
c.method(:two).arity     #=> 1
c.method(:three).arity   #=> -1
c.method(:four).arity    #=> 2
c.method(:five).arity    #=> -3
c.method(:six).arity     #=> -3
c.method(:seven).arity   #=> -3
c.method(:eight).arity   #=> 1
c.method(:nine).arity    #=> 1
c.method(:ten).arity     #=> -2

"cat".method(:size).arity      #=> 0
"cat".method(:replace).arity   #=> 1
"cat".method(:squeeze).arity   #=> -1
"cat".method(:count).arity     #=> -1

Returns the bound receiver of the method object.

(1..3).method(:map).receiver # => 1..3

Returns the class or module on which this method is defined. In other words,

meth.owner.instance_methods(false).include?(meth.name) # => true

holds as long as the method is not removed/undefined/replaced, (with private_instance_methods instead of instance_methods if the method is private).

See also Method#receiver.

(1..3).method(:map).owner #=> Enumerable
No documentation available

Returns a clone of this method.

class A
  def foo
    return "bar"
  end
end

m = A.new.method(:foo)
m.call # => "bar"
n = m.clone.call # => "bar"

Returns an indication of the number of arguments accepted by a method. Returns a nonnegative integer for methods that take a fixed number of arguments. For Ruby methods that take a variable number of arguments, returns -n-1, where n is the number of required arguments. Keyword arguments will be considered as a single additional argument, that argument being mandatory if any keyword argument is mandatory. For methods written in C, returns -1 if the call takes a variable number of arguments.

class C
  def one;    end
  def two(a); end
  def three(*a);  end
  def four(a, b); end
  def five(a, b, *c);    end
  def six(a, b, *c, &d); end
  def seven(a, b, x:0); end
  def eight(x:, y:); end
  def nine(x:, y:, **z); end
  def ten(*a, x:, y:); end
end
c = C.new
c.method(:one).arity     #=> 0
c.method(:two).arity     #=> 1
c.method(:three).arity   #=> -1
c.method(:four).arity    #=> 2
c.method(:five).arity    #=> -3
c.method(:six).arity     #=> -3
c.method(:seven).arity   #=> -3
c.method(:eight).arity   #=> 1
c.method(:nine).arity    #=> 1
c.method(:ten).arity     #=> -2

"cat".method(:size).arity      #=> 0
"cat".method(:replace).arity   #=> 1
"cat".method(:squeeze).arity   #=> -1
"cat".method(:count).arity     #=> -1

Returns the class or module on which this method is defined. In other words,

meth.owner.instance_methods(false).include?(meth.name) # => true

holds as long as the method is not removed/undefined/replaced, (with private_instance_methods instead of instance_methods if the method is private).

See also Method#receiver.

(1..3).method(:map).owner #=> Enumerable

TBD

It is equivalent to default_port.send(msg)

Closes default_port. Closing port is allowed only by the ractor which creates this port. So this close method also allowed by the current Ractor.

Checks if the object is shareable by ractors.

Ractor.shareable?(1)            #=> true -- numbers and other immutable basic values are frozen
Ractor.shareable?('foo')        #=> false, unless the string is frozen due to # frozen_string_literal: true
Ractor.shareable?('foo'.freeze) #=> true

See also the “Shareable and unshareable objects” section in the Ractor class docs.

Register port as a monitoring port. If the ractor terminated, the port received a Symbol object. :exited will be sent if the ractor terminated without an exception. :aborted will be sent if the ractor terminated with a exception.

r = Ractor.new{ some_task() }
r.monitor(port = Ractor::Port.new)
port.receive #=> :exited and r is terminated

r = Ractor.new{ raise "foo" }
r.monitor(port = Ractor::Port.new)
port.receive #=> :terminated and r is terminated with an exception "foo"

Unregister port from the monitoring ports.

Returns the seed value used to initialize the generator. This may be used to initialize another generator with the same state at a later time, causing it to produce the same sequence of numbers.

prng1 = Random.new(1234)
prng1.seed       #=> 1234
prng1.rand(100)  #=> 47

prng2 = Random.new(prng1.seed)
prng2.rand(100)  #=> 47

Returns the seed value used to initialize the Ruby system PRNG. This may be used to initialize another generator with the same state at a later time, causing it to produce the same sequence of numbers.

Random.seed      #=> 1234
prng1 = Random.new(Random.seed)
prng1.seed       #=> 1234
prng1.rand(100)  #=> 47
Random.seed      #=> 1234
Random.rand(100) #=> 47

Prevents threads from being added to or removed from the receiving ThreadGroup.

New threads can still be started in an enclosed ThreadGroup.

ThreadGroup::Default.enclose        #=> #<ThreadGroup:0x4029d914>
thr = Thread.new { Thread.stop }    #=> #<Thread:0x402a7210 sleep>
tg = ThreadGroup.new                #=> #<ThreadGroup:0x402752d4>
tg.add thr
#=> ThreadError: can't move from the enclosed thread group

Returns true if the thgrp is enclosed. See also ThreadGroup#enclose.

Basically the same as ::new. However, if class Thread is subclassed, then calling start in that subclass will not invoke the subclass’s initialize method.

Stops execution of the current thread, putting it into a “sleep” state, and schedules execution of another thread.

a = Thread.new { print "a"; Thread.stop; print "c" }
sleep 0.1 while a.status!='sleep'
print "b"
a.run
a.join
#=> "abc"
Search took: 8ms  ·  Total Results: 3694