Returns a hash of the name/value pairs, to use in pattern matching.
Measure = Data.define(:amount, :unit) distance = Measure[10, 'km'] distance.deconstruct_keys(nil) #=> {:amount=>10, :unit=>"km"} distance.deconstruct_keys([:amount]) #=> {:amount=>10} # usage case distance in amount:, unit: 'km' # calls #deconstruct_keys underneath puts "It is #{amount} kilometers away" else puts "Don't know how to handle it" end # prints "It is 10 kilometers away"
Or, with checking the class, too:
case distance in Measure(amount:, unit: 'km') puts "It is #{amount} kilometers away" # ... end
Returns a hash of the named captures; each key is a capture name; each value is its captured string or nil
:
m = /(?<foo>.)(.)(?<bar>.+)/.match("hoge") # => #<MatchData "hoge" foo:"h" bar:"ge"> m.named_captures # => {"foo"=>"h", "bar"=>"ge"} m = /(?<a>.)(?<b>.)/.match("01") # => #<MatchData "01" a:"0" b:"1"> m.named_captures #=> {"a" => "0", "b" => "1"} m = /(?<a>.)(?<b>.)?/.match("0") # => #<MatchData "0" a:"0" b:nil> m.named_captures #=> {"a" => "0", "b" => nil} m = /(?<a>.)(?<a>.)/.match("01") # => #<MatchData "01" a:"0" a:"1"> m.named_captures #=> {"a" => "1"}
If keyword argument symbolize_names
is given a true value, the keys in the resulting hash are Symbols:
m = /(?<a>.)(?<a>.)/.match("01") # => #<MatchData "01" a:"0" a:"1"> m.named_captures(symbolize_names: true) #=> {:a => "1"}
Returns a hash of the named captures for the given names.
m = /(?<hours>\d{2}):(?<minutes>\d{2}):(?<seconds>\d{2})/.match("18:37:22") m.deconstruct_keys([:hours, :minutes]) # => {:hours => "18", :minutes => "37"} m.deconstruct_keys(nil) # => {:hours => "18", :minutes => "37", :seconds => "22"}
Returns an empty hash if no named captures were defined:
m = /(\d{2}):(\d{2}):(\d{2})/.match("18:37:22") m.deconstruct_keys(nil) # => {}
Returns the substring of the target string from its beginning up to the first match in self
(that is, self[0]
); equivalent to regexp global variable $`
:
m = /(.)(.)(\d+)(\d)/.match("THX1138.") # => #<MatchData "HX1138" 1:"H" 2:"X" 3:"113" 4:"8"> m[0] # => "HX1138" m.pre_match # => "T"
Related: MatchData#post_match
.
Returns the substring of the target string from the end of the first match in self
(that is, self[0]
) to the end of the string; equivalent to regexp global variable $'
:
m = /(.)(.)(\d+)(\d)/.match("THX1138: The Movie") # => #<MatchData "HX1138" 1:"H" 2:"X" 3:"113" 4:"8"> m[0] # => "HX1138" m.post_match # => ": The Movie"\
Related: MatchData.pre_match
.
This is similar to PrettyPrint::format
but the result has no breaks.
maxwidth
, newline
and genspace
are ignored.
The invocation of breakable
in the block doesn’t break a line and is treated as just an invocation of text
.
Returns the group most recently added to the stack.
Contrived example:
out = "" => "" q = PrettyPrint.new(out) => #<PrettyPrint:0x82f85c0 @output="", @maxwidth=79, @newline="\n", @genspace=#<Proc:0x82f8368@/home/vbatts/.rvm/rubies/ruby-head/lib/ruby/2.0.0/prettyprint.rb:82 (lambda)>, @output_width=0, @buffer_width=0, @buffer=[], @group_stack=[#<PrettyPrint::Group:0x82f8138 @depth=0, @breakables=[], @break=false>], @group_queue=#<PrettyPrint::GroupQueue:0x82fb7c0 @queue=[[#<PrettyPrint::Group:0x82f8138 @depth=0, @breakables=[], @break=false>]]>, @indent=0> q.group { q.text q.current_group.inspect q.text q.newline q.group(q.current_group.depth + 1) { q.text q.current_group.inspect q.text q.newline q.group(q.current_group.depth + 1) { q.text q.current_group.inspect q.text q.newline q.group(q.current_group.depth + 1) { q.text q.current_group.inspect q.text q.newline } } } } => 284 puts out #<PrettyPrint::Group:0x8354758 @depth=1, @breakables=[], @break=false> #<PrettyPrint::Group:0x8354550 @depth=2, @breakables=[], @break=false> #<PrettyPrint::Group:0x83541cc @depth=3, @breakables=[], @break=false> #<PrettyPrint::Group:0x8347e54 @depth=4, @breakables=[], @break=false>
This is similar to breakable
except the decision to break or not is determined individually.
Two fill_breakable
under a group may cause 4 results: (break,break), (break,non-break), (non-break,break), (non-break,non-break). This is different to breakable
because two breakable
under a group may cause 2 results: (break,break), (non-break,non-break).
The text sep
is inserted if a line is not broken at this point.
If sep
is not specified, “ ” is used.
If width
is not specified, sep.length
is used. You will have to specify this when sep
is a multibyte character, for example.
Iterates over all IP addresses for name
.
Iterates over all IP addresses for name
.
Returns true if the referenced object is still alive.
Part of the protocol for converting objects to Proc
objects. Instances of class Proc
simply return themselves.
Marks the proc as passing keywords through a normal argument splat. This should only be called on procs that accept an argument splat (*args
) but not explicit keywords or a keyword splat. It marks the proc such that if the proc is called with keyword arguments, the final hash argument is marked with a special flag such that if it is the final element of a normal argument splat to another method call, and that method call does not include explicit keywords or a keyword splat, the final element is interpreted as keywords. In other words, keywords will be passed through the proc to other methods.
This should only be used for procs that delegate keywords to another method, and only for backwards compatibility with Ruby
versions before 2.7.
This method will probably be removed at some point, as it exists only for backwards compatibility. As it does not exist in Ruby
versions before 2.7, check that the proc responds to this method before calling it. Also, be aware that if this method is removed, the behavior of the proc will change so that it does not pass through keywords.
module Mod foo = ->(meth, *args, &block) do send(:"do_#{meth}", *args, &block) end foo.ruby2_keywords if foo.respond_to?(:ruby2_keywords) end
Returns a Proc
object corresponding to this method.
Returns the original name of the method.
class C def foo; end alias bar foo end C.instance_method(:bar).original_name # => :foo
Returns the original name of the method.
class C def foo; end alias bar foo end C.instance_method(:bar).original_name # => :foo
Make obj
shareable between ractors.
obj
and all the objects it refers to will be frozen, unless they are already shareable.
If copy
keyword is true
, it will copy objects before freezing them, and will not modify obj
or its internal objects.
Note that the specification and implementation of this method are not mature and may be changed in the future.
obj = ['test'] Ractor.shareable?(obj) #=> false Ractor.make_shareable(obj) #=> ["test"] Ractor.shareable?(obj) #=> true obj.frozen? #=> true obj[0].frozen? #=> true # Copy vs non-copy versions: obj1 = ['test'] obj1s = Ractor.make_shareable(obj1) obj1.frozen? #=> true obj1s.object_id == obj1.object_id #=> true obj2 = ['test'] obj2s = Ractor.make_shareable(obj2, copy: true) obj2.frozen? #=> false obj2s.frozen? #=> true obj2s.object_id == obj2.object_id #=> false obj2s[0].object_id == obj2[0].object_id #=> false
See also the “Shareable and unshareable objects” section in the Ractor
class docs.
return default port of the Ractor
.
Returns an array of the names of the thread-local variables (as Symbols).
thr = Thread.new do Thread.current.thread_variable_set(:cat, 'meow') Thread.current.thread_variable_set("dog", 'woof') end thr.join #=> #<Thread:0x401b3f10 dead> thr.thread_variables #=> [:dog, :cat]
Note that these are not fiber local variables. Please see Thread#[]
and Thread#thread_variable_get
for more details.
Returns true
if the given string (or symbol) exists as a thread-local variable.
me = Thread.current me.thread_variable_set(:oliver, "a") me.thread_variable?(:oliver) #=> true me.thread_variable?(:stanley) #=> false
Note that these are not fiber local variables. Please see Thread#[]
and Thread#thread_variable_get
for more details.
Generally, while a TracePoint
callback is running, other registered callbacks are not called to avoid confusion from reentrance. This method allows reentrance within a given block. Use this method carefully to avoid infinite callback invocation.
If called when reentrance is already allowed, it raises a RuntimeError
.
Example:
# Without reentry # --------------- line_handler = TracePoint.new(:line) do |tp| next if tp.path != __FILE__ # Only works in this file puts "Line handler" binding.eval("class C; end") end.enable class_handler = TracePoint.new(:class) do |tp| puts "Class handler" end.enable class B end # This script will print "Class handler" only once: when inside the :line # handler, all other handlers are ignored. # With reentry # ------------ line_handler = TracePoint.new(:line) do |tp| next if tp.path != __FILE__ # Only works in this file next if (__LINE__..__LINE__+3).cover?(tp.lineno) # Prevent infinite calls puts "Line handler" TracePoint.allow_reentry { binding.eval("class C; end") } end.enable class_handler = TracePoint.new(:class) do |tp| puts "Class handler" end.enable class B end # This will print "Class handler" twice: inside the allow_reentry block in the :line # handler, other handlers are enabled.
Note that the example shows the principal effect of the method, but its practical usage is for debugging libraries that sometimes require other libraries’ hooks to not be affected by the debugger being inside trace point handling. Precautions should be taken against infinite recursion in this case (note that we needed to filter out calls by itself from the :line handler, otherwise it would call itself infinitely).
Returns the return value from :return
, :c_return
, and :b_return
events.
Returns the compiled instruction sequence represented by a RubyVM::InstructionSequence
instance on the :script_compiled
event.
Note that this method is CRuby-specific.