Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor. It returns an array containing the accepted socket for the incoming connection, client_socket, and an Addrinfo
, client_addrinfo.
# In one script, start this first require 'socket' include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(2200, 'localhost') socket.bind(sockaddr) socket.listen(5) begin # emulate blocking accept client_socket, client_addrinfo = socket.accept_nonblock rescue IO::WaitReadable, Errno::EINTR IO.select([socket]) retry end puts "The client said, '#{client_socket.readline.chomp}'" client_socket.puts "Hello from script one!" socket.close # In another script, start this second require 'socket' include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(2200, 'localhost') socket.connect(sockaddr) socket.puts "Hello from script 2." puts "The server said, '#{socket.readline.chomp}'" socket.close
Refer to Socket#accept
for the exceptions that may be thrown if the call to accept_nonblock fails.
Socket#accept_nonblock
may raise any error corresponding to accept(2) failure, including Errno::EWOULDBLOCK.
If the exception is Errno::EWOULDBLOCK, Errno::EAGAIN, Errno::ECONNABORTED or Errno::EPROTO, it is extended by IO::WaitReadable
. So IO::WaitReadable
can be used to rescue the exceptions for retrying accept_nonblock.
By specifying a keyword argument exception to false
, you can indicate that accept_nonblock
should not raise an IO::WaitReadable
exception, but return the symbol :wait_readable
instead.
yield socket and client address for each a connection accepted via given sockets.
The arguments are a list of sockets. The individual argument should be a socket or an array of sockets.
This method yields the block sequentially. It means that the next connection is not accepted until the block returns. So concurrent mechanism, thread for example, should be used to service multiple clients at a time.
Requests a connection to be made on the given remote_sockaddr
after O_NONBLOCK is set for the underlying file descriptor. Returns 0 if successful, otherwise an exception is raised.
remote_sockaddr
- the struct
sockaddr contained in a string or Addrinfo
object
# Pull down Google's web page require 'socket' include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(80, 'www.google.com') begin # emulate blocking connect socket.connect_nonblock(sockaddr) rescue IO::WaitWritable IO.select(nil, [socket]) # wait 3-way handshake completion begin socket.connect_nonblock(sockaddr) # check connection failure rescue Errno::EISCONN end end socket.write("GET / HTTP/1.0\r\n\r\n") results = socket.read
Refer to Socket#connect
for the exceptions that may be thrown if the call to connect_nonblock fails.
Socket#connect_nonblock
may raise any error corresponding to connect(2) failure, including Errno::EINPROGRESS.
If the exception is Errno::EINPROGRESS, it is extended by IO::WaitWritable
. So IO::WaitWritable
can be used to rescue the exceptions for retrying connect_nonblock.
By specifying a keyword argument exception to false
, you can indicate that connect_nonblock
should not raise an IO::WaitWritable
exception, but return the symbol :wait_writable
instead.
sendmsg_nonblock
sends a message using sendmsg(2) system call in non-blocking manner.
It is similar to BasicSocket#sendmsg
but the non-blocking flag is set before the system call and it doesn’t retry the system call.
By specifying a keyword argument exception to false
, you can indicate that sendmsg_nonblock
should not raise an IO::WaitWritable
exception, but return the symbol :wait_writable
instead.
creates a new Socket
connected to the address of local_addrinfo
.
If local_addrinfo is nil, the address of the socket is not bound.
The timeout specify the seconds for timeout. Errno::ETIMEDOUT is raised when timeout occur.
If a block is given the created socket is yielded for each address.
Returns the IP address and port number as 2-element array.
Addrinfo.tcp("127.0.0.1", 80).ip_unpack #=> ["127.0.0.1", 80] Addrinfo.tcp("::1", 80).ip_unpack #=> ["::1", 80]
Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor. It returns an accepted TCPSocket
for the incoming connection.
require 'socket' serv = TCPServer.new(2202) begin # emulate blocking accept sock = serv.accept_nonblock rescue IO::WaitReadable, Errno::EINTR IO.select([serv]) retry end # sock is an accepted socket.
Refer to Socket#accept
for the exceptions that may be thrown if the call to TCPServer#accept_nonblock
fails.
TCPServer#accept_nonblock
may raise any error corresponding to accept(2) failure, including Errno::EWOULDBLOCK.
If the exception is Errno::EWOULDBLOCK, Errno::EAGAIN, Errno::ECONNABORTED, Errno::EPROTO, it is extended by IO::WaitReadable
. So IO::WaitReadable
can be used to rescue the exceptions for retrying accept_nonblock.
By specifying a keyword argument exception to false
, you can indicate that accept_nonblock
should not raise an IO::WaitReadable
exception, but return the symbol :wait_readable
instead.
Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor. It returns an accepted UNIXSocket
for the incoming connection.
require 'socket' serv = UNIXServer.new("/tmp/sock") begin # emulate blocking accept sock = serv.accept_nonblock rescue IO::WaitReadable, Errno::EINTR IO.select([serv]) retry end # sock is an accepted socket.
Refer to Socket#accept
for the exceptions that may be thrown if the call to UNIXServer#accept_nonblock
fails.
UNIXServer#accept_nonblock
may raise any error corresponding to accept(2) failure, including Errno::EWOULDBLOCK.
If the exception is Errno::EWOULDBLOCK, Errno::EAGAIN, Errno::ECONNABORTED or Errno::EPROTO, it is extended by IO::WaitReadable
. So IO::WaitReadable
can be used to rescue the exceptions for retrying accept_nonblock.
By specifying a keyword argument exception to false
, you can indicate that accept_nonblock
should not raise an IO::WaitReadable
exception, but return the symbol :wait_readable
instead.
Sends io as file descriptor passing.
s1, s2 = UNIXSocket.pair s1.send_io STDOUT stdout = s2.recv_io p STDOUT.fileno #=> 1 p stdout.fileno #=> 6 stdout.puts "hello" # outputs "hello\n" to standard output.
io may be any kind of IO
object or integer file descriptor.
Returns a shallow copy of self
; the [stored string] in the copy is the same string as in self
.
If object
is a hash, returns object
.
Otherwise if object
responds to :to_hash
, calls object.to_hash
; returns the result if it is a hash, or raises TypeError
if not.
Otherwise if object
does not respond to :to_hash
, returns nil
.
Replaces the entire contents of self
with the contents of other_hash
; returns self
:
h = {foo: 0, bar: 1, baz: 2} h.replace({bat: 3, bam: 4}) # => {bat: 3, bam: 4}
Related: see Methods for Assigning.
Serialization support for the object returned by _getobj_.
Reinitializes delegation from a serialized object.
Can be used to set eoutvar as described in ERB::new
. It’s probably easier to just use the constructor though, since calling this method requires the setup of an ERB
compiler object.
Returns a string for DNS reverse lookup compatible with RFC3172.
Changes asynchronous interrupt timing.
interrupt means asynchronous event and corresponding procedure by Thread#raise
, Thread#kill
, signal trap (not supported yet) and main thread termination (if main thread terminates, then all other thread will be killed).
The given hash
has pairs like ExceptionClass => :TimingSymbol
. Where the ExceptionClass is the interrupt handled by the given block. The TimingSymbol can be one of the following symbols:
:immediate
Invoke interrupts immediately.
:on_blocking
Invoke interrupts while BlockingOperation.
:never
Never invoke all interrupts.
BlockingOperation means that the operation will block the calling thread, such as read and write. On CRuby implementation, BlockingOperation is any operation executed without GVL.
Masked asynchronous interrupts are delayed until they are enabled. This method is similar to sigprocmask(3).
Asynchronous interrupts are difficult to use.
If you need to communicate between threads, please consider to use another way such as Queue
.
Or use them with deep understanding about this method.
In this example, we can guard from Thread#raise
exceptions.
Using the :never
TimingSymbol the RuntimeError
exception will always be ignored in the first block of the main thread. In the second ::handle_interrupt
block we can purposefully handle RuntimeError
exceptions.
th = Thread.new do Thread.handle_interrupt(RuntimeError => :never) { begin # You can write resource allocation code safely. Thread.handle_interrupt(RuntimeError => :immediate) { # ... } ensure # You can write resource deallocation code safely. end } end Thread.pass # ... th.raise "stop"
While we are ignoring the RuntimeError
exception, it’s safe to write our resource allocation code. Then, the ensure block is where we can safely deallocate your resources.
It’s possible to stack multiple levels of ::handle_interrupt
blocks in order to control more than one ExceptionClass and TimingSymbol at a time.
Thread.handle_interrupt(FooError => :never) { Thread.handle_interrupt(BarError => :never) { # FooError and BarError are prohibited. } }
All exceptions inherited from the ExceptionClass parameter will be considered.
Thread.handle_interrupt(Exception => :never) { # all exceptions inherited from Exception are prohibited. }
For handling all interrupts, use Object
and not Exception
as the ExceptionClass, as kill/terminate interrupts are not handled by Exception
.
Returns whether or not the asynchronous queue is empty.
Since Thread::handle_interrupt
can be used to defer asynchronous events, this method can be used to determine if there are any deferred events.
If you find this method returns true, then you may finish :never
blocks.
For example, the following method processes deferred asynchronous events immediately.
def Thread.kick_interrupt_immediately Thread.handle_interrupt(Object => :immediate) { Thread.pass } end
If error
is given, then check only for error
type deferred events.
th = Thread.new{ Thread.handle_interrupt(RuntimeError => :on_blocking){ while true ... # reach safe point to invoke interrupt if Thread.pending_interrupt? Thread.handle_interrupt(Object => :immediate){} end ... end } } ... th.raise # stop thread
This example can also be written as the following, which you should use to avoid asynchronous interrupts.
flag = true th = Thread.new{ Thread.handle_interrupt(RuntimeError => :on_blocking){ while true ... # reach safe point to invoke interrupt break if flag == false ... end } } ... flag = false # stop thread
Returns whether or not the asynchronous queue is empty for the target thread.
If error
is given, then check only for error
type deferred events.
See ::pending_interrupt?
for more information.
Enters exclusive section.
Enters exclusive section and executes the block. Leaves the exclusive section automatically when the block exits. See example under MonitorMixin
.
Initializes the MonitorMixin
after being included in a class or when an object has been extended with the MonitorMixin
Reset the dir
and path
values. The next time dir
or path
is requested, the values will be calculated from scratch. This is mainly used by the unit tests to provide test isolation.