Calls the block with specified dates; returns self
.
The first date
is self
.
Each successive date
is date + step
, where step
is the numeric step size in days.
The last date is the last one that is before or equal to limit
, which should be a Date object.
Example:
limit = Date.new(2001, 12, 31) Date.new(2001).step(limit){|date| p date.to_s if date.mday == 31 }
Output:
"2001-01-31" "2001-03-31" "2001-05-31" "2001-07-31" "2001-08-31" "2001-10-31" "2001-12-31"
Returns an Enumerator
if no block is given.
Returns a string representation of self
:
Date.new(2001, 2, 3).inspect # => "#<Date: 2001-02-03 ((2451944j,0s,0n),+0s,2299161j)>"
Creates a DateTime
object denoting the given ordinal date.
DateTime.ordinal(2001,34) #=> #<DateTime: 2001-02-03T00:00:00+00:00 ...> DateTime.ordinal(2001,34,4,5,6,'+7') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.ordinal(2001,-332,-20,-55,-54,'+7') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
Returns a string representation of self
with subseconds:
t = Time.new(2000, 12, 31, 23, 59, 59, 0.5) t.inspect # => "2000-12-31 23:59:59.5 +000001"
Related: Time#ctime
, Time#to_s
:
t.ctime # => "Sun Dec 31 23:59:59 2000" t.to_s # => "2000-12-31 23:59:59 +0000"
Returns the integer minute of the hour for self
, in range (0..59):
t = Time.new(2000, 1, 2, 3, 4, 5, 6) # => 2000-01-02 03:04:05 +000006 t.min # => 4
Returns true
if self
is in daylight saving time, false
otherwise:
t = Time.local(2000, 1, 1) # => 2000-01-01 00:00:00 -0600 t.zone # => "Central Standard Time" t.dst? # => false t = Time.local(2000, 7, 1) # => 2000-07-01 00:00:00 -0500 t.zone # => "Central Daylight Time" t.dst? # => true
Returns true
if self
is in daylight saving time, false
otherwise:
t = Time.local(2000, 1, 1) # => 2000-01-01 00:00:00 -0600 t.zone # => "Central Standard Time" t.dst? # => false t = Time.local(2000, 7, 1) # => 2000-07-01 00:00:00 -0500 t.zone # => "Central Daylight Time" t.dst? # => true
Returns true
if self
represents a Friday, false
otherwise:
t = Time.utc(2000, 1, 7) # => 2000-01-07 00:00:00 UTC t.friday? # => true
Related: Time#saturday?
, Time#sunday?
, Time#monday?
.
Tries to set console size. The effect depends on the platform and the running environment.
You must require ‘io/console’ to use this method.
Returns status information for ios as an object of type File::Stat
.
f = File.new("testfile") s = f.stat "%o" % s.mode #=> "100644" s.blksize #=> 4096 s.atime #=> Wed Apr 09 08:53:54 CDT 2003
Returns an array of all lines read from the stream.
When called from class IO (but not subclasses of IO), this method has potential security vulnerabilities if called with untrusted input; see Command Injection.
The first argument must be a string that is the path to a file.
With only argument path
given, parses lines from the file at the given path
, as determined by the default line separator, and returns those lines in an array:
IO.readlines('t.txt') # => ["First line\n", "Second line\n", "\n", "Third line\n", "Fourth line\n"]
With argument sep
given, parses lines as determined by that line separator (see Line Separator):
# Ordinary separator. IO.readlines('t.txt', 'li') # =>["First li", "ne\nSecond li", "ne\n\nThird li", "ne\nFourth li", "ne\n"] # Get-paragraphs separator. IO.readlines('t.txt', '') # => ["First line\nSecond line\n\n", "Third line\nFourth line\n"] # Get-all separator. IO.readlines('t.txt', nil) # => ["First line\nSecond line\n\nThird line\nFourth line\n"]
With argument limit
given, parses lines as determined by the default line separator and the given line-length limit (see Line Separator and Line Limit:
IO.readlines('t.txt', 7) # => ["First l", "ine\n", "Second ", "line\n", "\n", "Third l", "ine\n", "Fourth ", "line\n"]
With arguments sep
and limit
given, combines the two behaviors (see Line Separator and Line Limit).
Optional keyword arguments opts
specify:
Encoding options.
Behaves like IO.read
, except that the stream is opened in binary mode with ASCII-8BIT encoding.
When called from class IO (but not subclasses of IO), this method has potential security vulnerabilities if called with untrusted input; see Command Injection.
Opens the stream, writes the given data
to it, and closes the stream; returns the number of bytes written.
When called from class IO (but not subclasses of IO), this method has potential security vulnerabilities if called with untrusted input; see Command Injection.
The first argument must be a string that is the path to a file.
With only argument path
given, writes the given data
to the file at that path:
IO.write('t.tmp', 'abc') # => 3 File.read('t.tmp') # => "abc"
If offset
is zero (the default), the file is overwritten:
IO.write('t.tmp', 'A') # => 1 File.read('t.tmp') # => "A"
If offset
in within the file content, the file is partly overwritten:
IO.write('t.tmp', 'abcdef') # => 3 File.read('t.tmp') # => "abcdef" # Offset within content. IO.write('t.tmp', '012', 2) # => 3 File.read('t.tmp') # => "ab012f"
If offset
is outside the file content, the file is padded with null characters "\u0000"
:
IO.write('t.tmp', 'xyz', 10) # => 3 File.read('t.tmp') # => "ab012f\u0000\u0000\u0000\u0000xyz"
Optional keyword arguments opts
specify:
Encoding options.
Writes the given object
to self, which must be opened for writing (see Modes); returns the number bytes written. If object
is not a string is converted via method to_s:
f = File.new('t.tmp', 'w') f.syswrite('foo') # => 3 f.syswrite(30) # => 2 f.syswrite(:foo) # => 3 f.close
This methods should not be used with other stream-writer methods.
Behaves like IO#write
, except that it:
Writes at the given offset
(in bytes).
Disregards, and does not modify, the stream’s position (see Position).
Bypasses any user space buffering in the stream.
Because this method does not disturb the stream’s state (its position, in particular), pwrite
allows multiple threads and processes to use the same IO object for writing at various offsets.
f = File.open('t.tmp', 'w+') # Write 6 bytes at offset 3. f.pwrite('ABCDEF', 3) # => 6 f.rewind f.read # => "\u0000\u0000\u0000ABCDEF" f.close
Not available on some platforms.
Returns the current line number for the stream; see Line Number.
Sets and returns the line number for the stream; see Line Number.
Reads and returns all remaining line from the stream; does not modify $_
. See Line IO.
With no arguments given, returns lines as determined by line separator $/
, or nil
if none:
f = File.new('t.txt') f.readlines # => ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"] f.readlines # => [] f.close
With only string argument sep
given, returns lines as determined by line separator sep
, or nil
if none; see Line Separator:
f = File.new('t.txt') f.readlines('li') # => ["First li", "ne\nSecond li", "ne\n\nFourth li", "ne\nFifth li", "ne\n"] f.close
The two special values for sep
are honored:
f = File.new('t.txt') # Get all into one string. f.readlines(nil) # => ["First line\nSecond line\n\nFourth line\nFifth line\n"] # Get paragraphs (up to two line separators). f.rewind f.readlines('') # => ["First line\nSecond line\n\n", "Fourth line\nFifth line\n"] f.close
With only integer argument limit
given, limits the number of bytes in each line; see Line Limit:
f = File.new('t.txt') f.readlines(8) # => ["First li", "ne\n", "Second l", "ine\n", "\n", "Fourth l", "ine\n", "Fifth li", "ne\n"] f.close
With arguments sep
and limit
given, combines the two behaviors (see Line Separator and Line Limit).
Optional keyword argument chomp
specifies whether line separators are to be omitted:
f = File.new('t.txt') f.readlines(chomp: true) # => ["First line", "Second line", "", "Fourth line", "Fifth line"] f.close
Writes each of the given objects
to self
, which must be opened for writing (see Access Modes); returns the total number bytes written; each of objects
that is not a string is converted via method to_s
:
$stdout.write('Hello', ', ', 'World!', "\n") # => 14 $stdout.write('foo', :bar, 2, "\n") # => 8
Output:
Hello, World! foobar2
Related: IO#read
.
Pushes back (“unshifts”) the given data onto the stream’s buffer, placing the data so that it is next to be read; returns nil
. See Byte IO.
Note that:
Calling the method has no effect with unbuffered reads (such as IO#sysread
).
Calling rewind
on the stream discards the pushed-back data.
When argument integer
is given, uses only its low-order byte:
File.write('t.tmp', '012') f = File.open('t.tmp') f.ungetbyte(0x41) # => nil f.read # => "A012" f.rewind f.ungetbyte(0x4243) # => nil f.read # => "C012" f.close
When argument string
is given, uses all bytes:
File.write('t.tmp', '012') f = File.open('t.tmp') f.ungetbyte('A') # => nil f.read # => "A012" f.rewind f.ungetbyte('BCDE') # => nil f.read # => "BCDE012" f.close
Pushes back (“unshifts”) the given data onto the stream’s buffer, placing the data so that it is next to be read; returns nil
. See Character IO.
Note that:
Calling the method has no effect with unbuffered reads (such as IO#sysread
).
Calling rewind
on the stream discards the pushed-back data.
When argument integer
is given, interprets the integer as a character:
File.write('t.tmp', '012') f = File.open('t.tmp') f.ungetc(0x41) # => nil f.read # => "A012" f.rewind f.ungetc(0x0442) # => nil f.getc.ord # => 1090 f.close
When argument string
is given, uses all characters:
File.write('t.tmp', '012') f = File.open('t.tmp') f.ungetc('A') # => nil f.read # => "A012" f.rewind f.ungetc("\u0442\u0435\u0441\u0442") # => nil f.getc.ord # => 1090 f.getc.ord # => 1077 f.getc.ord # => 1089 f.getc.ord # => 1090 f.close
Repositions the stream to its beginning, setting both the position and the line number to zero; see Position and Line Number:
f = File.open('t.txt') f.tell # => 0 f.lineno # => 0 f.gets # => "First line\n" f.tell # => 12 f.lineno # => 1 f.rewind # => 0 f.tell # => 0 f.lineno # => 0 f.close
Note that this method cannot be used with streams such as pipes, ttys, and sockets.