Results for: "Array"

Returns an Array of the components defined from the COMPONENT Array.

Private method to cleanup dn from using the path component attribute.

Private method to cleanup attributes, scope, filter, and extensions from using the query component attribute.

Returns the discarded bytes when Encoding::InvalidByteSequenceError occurs.

ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
begin
  ec.convert("abc\xA1\xFFdef")
rescue Encoding::InvalidByteSequenceError
  p $!      #=> #<Encoding::InvalidByteSequenceError: "\xA1" followed by "\xFF" on EUC-JP>
  puts $!.error_bytes.dump          #=> "\xA1"
  puts $!.readagain_bytes.dump      #=> "\xFF"
end

Returns a conversion path.

p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP")
#=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
#    [#<Encoding:UTF-8>, #<Encoding:EUC-JP>]]

p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP", universal_newline: true)
or
p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP", newline: :universal)
#=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
#    [#<Encoding:UTF-8>, #<Encoding:EUC-JP>],
#    "universal_newline"]

p Encoding::Converter.search_convpath("ISO-8859-1", "UTF-32BE", universal_newline: true)
or
p Encoding::Converter.search_convpath("ISO-8859-1", "UTF-32BE", newline: :universal)
#=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
#    "universal_newline",
#    [#<Encoding:UTF-8>, #<Encoding:UTF-32BE>]]

primitive_errinfo returns important information regarding the last error as a 5-element array:

[result, enc1, enc2, error_bytes, readagain_bytes]

result is the last result of primitive_convert.

Other elements are only meaningful when result is :invalid_byte_sequence, :incomplete_input or :undefined_conversion.

enc1 and enc2 indicate a conversion step as a pair of strings. For example, a converter from EUC-JP to ISO-8859-1 converts a string as follows: EUC-JP -> UTF-8 -> ISO-8859-1. So [enc1, enc2] is either [“EUC-JP”, “UTF-8”] or [“UTF-8”, “ISO-8859-1”].

error_bytes and readagain_bytes indicate the byte sequences which caused the error. error_bytes is discarded portion. readagain_bytes is buffered portion which is read again on next conversion.

Example:

# \xff is invalid as EUC-JP.
ec = Encoding::Converter.new("EUC-JP", "Shift_JIS")
ec.primitive_convert(src="\xff", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "EUC-JP", "Shift_JIS", "\xFF", ""]

# HIRAGANA LETTER A (\xa4\xa2 in EUC-JP) is not representable in ISO-8859-1.
# Since this error is occur in UTF-8 to ISO-8859-1 conversion,
# error_bytes is HIRAGANA LETTER A in UTF-8 (\xE3\x81\x82).
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4\xa2", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:undefined_conversion, "UTF-8", "ISO-8859-1", "\xE3\x81\x82", ""]

# partial character is invalid
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:incomplete_input, "EUC-JP", "UTF-8", "\xA4", ""]

# Encoding::Converter::PARTIAL_INPUT prevents invalid errors by
# partial characters.
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4", dst="", nil, 10, Encoding::Converter::PARTIAL_INPUT)
p ec.primitive_errinfo
#=> [:source_buffer_empty, nil, nil, nil, nil]

# \xd8\x00\x00@ is invalid as UTF-16BE because
# no low surrogate after high surrogate (\xd8\x00).
# It is detected by 3rd byte (\00) which is part of next character.
# So the high surrogate (\xd8\x00) is discarded and
# the 3rd byte is read again later.
# Since the byte is buffered in ec, it is dropped from src.
ec = Encoding::Converter.new("UTF-16BE", "UTF-8")
ec.primitive_convert(src="\xd8\x00\x00@", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "UTF-16BE", "UTF-8", "\xD8\x00", "\x00"]
p src
#=> "@"

# Similar to UTF-16BE, \x00\xd8@\x00 is invalid as UTF-16LE.
# The problem is detected by 4th byte.
ec = Encoding::Converter.new("UTF-16LE", "UTF-8")
ec.primitive_convert(src="\x00\xd8@\x00", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "UTF-16LE", "UTF-8", "\x00\xD8", "@\x00"]
p src
#=> ""

Returns an exception object for the last conversion. Returns nil if the last conversion did not produce an error.

“error” means that Encoding::InvalidByteSequenceError and Encoding::UndefinedConversionError for Encoding::Converter#convert and :invalid_byte_sequence, :incomplete_input and :undefined_conversion for Encoding::Converter#primitive_convert.

ec = Encoding::Converter.new("utf-8", "iso-8859-1")
p ec.primitive_convert(src="\xf1abcd", dst="")       #=> :invalid_byte_sequence
p ec.last_error      #=> #<Encoding::InvalidByteSequenceError: "\xF1" followed by "a" on UTF-8>
p ec.primitive_convert(src, dst, nil, 1)             #=> :destination_buffer_full
p ec.last_error      #=> nil

Reads the file from pathname, then parses it like ::parse, returning the root node of the abstract syntax tree.

SyntaxError is raised if pathname’s contents are not valid Ruby syntax.

RubyVM::AbstractSyntaxTree.parse_file("my-app/app.rb")
# => #<RubyVM::AbstractSyntaxTree::Node:SCOPE@1:0-31:3>

See ::parse for explanation of keyword argument meaning and usage.

Generates a new key (pair).

If a String is given as the first argument, it generates a new random key for the algorithm specified by the name just as ::generate_parameters does. If an OpenSSL::PKey::PKey is given instead, it generates a new random key for the same algorithm as the key, using the parameters the key contains.

See ::generate_parameters for the details of options and the given block.

Example

pkey_params = OpenSSL::PKey.generate_parameters("DSA", "dsa_paramgen_bits" => 2048)
pkey_params.priv_key #=> nil
pkey = OpenSSL::PKey.generate_key(pkey_params)
pkey.priv_key #=> #<OpenSSL::BN 6277...

Mixes the bytes from str into the Pseudo Random Number Generator(PRNG) state.

Thus, if the data from str are unpredictable to an adversary, this increases the uncertainty about the state and makes the PRNG output less predictable.

The entropy argument is (the lower bound of) an estimate of how much randomness is contained in str, measured in bytes.

Example

pid = $$
now = Time.now
ary = [now.to_i, now.nsec, 1000, pid]
OpenSSL::Random.add(ary.join, 0.0)
OpenSSL::Random.seed(ary.join)

Generates a String with length number of cryptographically strong pseudo-random bytes.

Example

OpenSSL::Random.random_bytes(12)
#=> "..."

Get the raw cookies as a string.

Get the raw RFC2965 cookies as a string.

Parses multipart form elements according to

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.2

Returns a hash of multipart form parameters with bodies of type StringIO or Tempfile depending on whether the multipart form element exceeds 10 KB

params[name => body]

Generate a Form element with multipart encoding as a String.

Multipart encoding is used for forms that include file uploads.

action is the action to perform. enctype is the encoding type, which defaults to “multipart/form-data”.

Alternatively, the attributes can be specified as a hash.

multipart_form{ "string" }
  # <FORM METHOD="post" ENCTYPE="multipart/form-data">string</FORM>

multipart_form("url") { "string" }
  # <FORM METHOD="post" ACTION="url" ENCTYPE="multipart/form-data">string</FORM>

Generates a radio-button Input element.

name is the name of the input field. value is the value of the field if checked. checked specifies whether the field starts off checked.

Alternatively, the attributes can be specified as a hash.

radio_button("name", "value")
  # <INPUT TYPE="radio" NAME="name" VALUE="value">

radio_button("name", "value", true)
  # <INPUT TYPE="radio" NAME="name" VALUE="value" CHECKED>

radio_button("NAME" => "name", "VALUE" => "value", "ID" => "foo")
  # <INPUT TYPE="radio" NAME="name" VALUE="value" ID="foo">

Generate a sequence of radio button Input elements, as a String.

This works the same as checkbox_group(). However, it is not valid to have more than one radiobutton in a group checked.

radio_group("name", "foo", "bar", "baz")
  # <INPUT TYPE="radio" NAME="name" VALUE="foo">foo
  # <INPUT TYPE="radio" NAME="name" VALUE="bar">bar
  # <INPUT TYPE="radio" NAME="name" VALUE="baz">baz

radio_group("name", ["foo"], ["bar", true], "baz")
  # <INPUT TYPE="radio" NAME="name" VALUE="foo">foo
  # <INPUT TYPE="radio" CHECKED NAME="name" VALUE="bar">bar
  # <INPUT TYPE="radio" NAME="name" VALUE="baz">baz

radio_group("name", ["1", "Foo"], ["2", "Bar", true], "Baz")
  # <INPUT TYPE="radio" NAME="name" VALUE="1">Foo
  # <INPUT TYPE="radio" CHECKED NAME="name" VALUE="2">Bar
  # <INPUT TYPE="radio" NAME="name" VALUE="Baz">Baz

radio_group("NAME" => "name",
              "VALUES" => ["foo", "bar", "baz"])

radio_group("NAME" => "name",
              "VALUES" => [["foo"], ["bar", true], "baz"])

radio_group("NAME" => "name",
              "VALUES" => [["1", "Foo"], ["2", "Bar", true], "Baz"])
No documentation available

Sets the value for field 'Range'; see Range request header:

With argument length:

req = Net::HTTP::Get.new(uri)
req.set_range(100)      # => 100
req['Range']            # => "bytes=0-99"

With arguments offset and length:

req.set_range(100, 100) # => 100...200
req['Range']            # => "bytes=100-199"

With argument range:

req.set_range(100..199) # => 100..199
req['Range']            # => "bytes=100-199"

Net::HTTPHeader#range= is an alias for Net::HTTPHeader#set_range.

Returns a Range object representing the value of field 'Content-Range', or nil if no such field exists; see Content-Range response header:

res = Net::HTTP.get_response(hostname, '/todos/1')
res['Content-Range'] # => nil
res['Content-Range'] = 'bytes 0-499/1000'
res['Content-Range'] # => "bytes 0-499/1000"
res.content_range    # => 0..499

Returns the integer representing length of the value of field 'Content-Range', or nil if no such field exists; see Content-Range response header:

res = Net::HTTP.get_response(hostname, '/todos/1')
res['Content-Range'] # => nil
res['Content-Range'] = 'bytes 0-499/1000'
res.range_length     # => 500

Generate a random binary string.

The argument n specifies the length of the result string.

If n is not specified or is nil, 16 is assumed. It may be larger in future.

The result may contain any byte: “x00” - “xff”.

require 'random/formatter'

Random.random_bytes #=> "\xD8\\\xE0\xF4\r\xB2\xFC*WM\xFF\x83\x18\xF45\xB6"
# or
prng = Random.new
prng.random_bytes #=> "m\xDC\xFC/\a\x00Uf\xB2\xB2P\xBD\xFF6S\x97"

Internal interface to Random; Generate random data n bytes.

Generates formatted random number from raw random bytes. See Random#rand.

No documentation available
Search took: 4ms  ·  Total Results: 1482