Returns the element from self
found by a binary search, or nil
if the search found no suitable element.
See Binary Searching.
Related: see Methods for Fetching.
Returns +self+ if +self+ is not a zero value, +nil+ otherwise; uses method <tt>zero?</tt> for the evaluation. The returned +self+ allows the method to be chained: a = %w[z Bb bB bb BB a aA Aa AA A] a.sort {|a, b| (a.downcase <=> b.downcase).nonzero? || a <=> b } # => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"] Of the Core and Standard Library classes, Integer, Float, Rational, and Complex use this implementation.
Related: zero?
Extracts data from self
.
If block
is not given, forming objects that become the elements of a new array, and returns that array. Otherwise, yields each object.
See Packed Data.
Like String#unpack
, but unpacks and returns only the first extracted object. See Packed Data.
Inserts the given other_string
into self
; returns self
.
If the Integer
index
is positive, inserts other_string
at offset index
:
'foo'.insert(1, 'bar') # => "fbaroo"
If the Integer
index
is negative, counts backward from the end of self
and inserts other_string
at offset index+1
(that is, after self[index]
):
'foo'.insert(-2, 'bar') # => "fobaro"
Returns an array of the characters in self
:
'hello'.chars # => ["h", "e", "l", "l", "o"] 'тест'.chars # => ["т", "е", "с", "т"] 'こんにちは'.chars # => ["こ", "ん", "に", "ち", "は"]
Checks the compatibility of two objects.
If the objects are both strings they are compatible when they are concatenatable. The encoding of the concatenated string will be returned if they are compatible, nil if they are not.
Encoding.compatible?("\xa1".force_encoding("iso-8859-1"), "b") #=> #<Encoding:ISO-8859-1> Encoding.compatible?( "\xa1".force_encoding("iso-8859-1"), "\xa1\xa1".force_encoding("euc-jp")) #=> nil
If the objects are non-strings their encodings are compatible when they have an encoding and:
Either encoding is US-ASCII compatible
One of the encodings is a 7-bit encoding
Returns a hash of values parsed from string
according to the given format
:
Date._strptime('2001-02-03', '%Y-%m-%d') # => {:year=>2001, :mon=>2, :mday=>3}
For other formats, see Formats for Dates and Times. (Unlike Date.strftime
, does not support flags and width.)
See also strptime(3).
Related: Date.strptime
(returns a Date object).
Returns a new Date object with values parsed from string
, according to the given format
:
Date.strptime('2001-02-03', '%Y-%m-%d') # => #<Date: 2001-02-03> Date.strptime('03-02-2001', '%d-%m-%Y') # => #<Date: 2001-02-03> Date.strptime('2001-034', '%Y-%j') # => #<Date: 2001-02-03> Date.strptime('2001-W05-6', '%G-W%V-%u') # => #<Date: 2001-02-03> Date.strptime('2001 04 6', '%Y %U %w') # => #<Date: 2001-02-03> Date.strptime('2001 05 6', '%Y %W %u') # => #<Date: 2001-02-03> Date.strptime('sat3feb01', '%a%d%b%y') # => #<Date: 2001-02-03>
For other formats, see Formats for Dates and Times. (Unlike Date.strftime
, does not support flags and width.)
See argument start.
See also strptime(3).
Related: Date._strptime
(returns a hash).
Parses the given representation of date and time with the given template, and returns a hash of parsed elements. _strptime does not support specification of flags and width unlike strftime.
See also strptime(3) and strftime
.
Parses the given representation of date and time with the given template, and creates a DateTime
object. strptime does not support specification of flags and width unlike strftime.
DateTime.strptime('2001-02-03T04:05:06+07:00', '%Y-%m-%dT%H:%M:%S%z') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.strptime('03-02-2001 04:05:06 PM', '%d-%m-%Y %I:%M:%S %p') #=> #<DateTime: 2001-02-03T16:05:06+00:00 ...> DateTime.strptime('2001-W05-6T04:05:06+07:00', '%G-W%V-%uT%H:%M:%S%z') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.strptime('2001 04 6 04 05 06 +7', '%Y %U %w %H %M %S %z') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.strptime('2001 05 6 04 05 06 +7', '%Y %W %u %H %M %S %z') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.strptime('-1', '%s') #=> #<DateTime: 1969-12-31T23:59:59+00:00 ...> DateTime.strptime('-1000', '%Q') #=> #<DateTime: 1969-12-31T23:59:59+00:00 ...> DateTime.strptime('sat3feb014pm+7', '%a%d%b%y%H%p%z') #=> #<DateTime: 2001-02-03T16:00:00+07:00 ...>
See also strptime(3) and strftime
.
Works similar to parse
except that instead of using a heuristic to detect the format of the input string, you provide a second argument that describes the format of the string.
Raises ArgumentError
if the date or format is invalid.
If a block is given, the year described in date
is converted by the block. For example:
Time.strptime(...) {|y| y < 100 ? (y >= 69 ? y + 1900 : y + 2000) : y}
Below is a list of the formatting options:
The abbreviated weekday name (“Sun”)
The full weekday name (“Sunday”)
The abbreviated month name (“Jan”)
The full month name (“January”)
The preferred local date and time representation
Century (20 in 2009)
Day of the month (01..31)
Date (%m/%d/%y)
Day of the month, blank-padded ( 1..31)
Equivalent to %Y-%m-%d (the ISO 8601 date format)
The last two digits of the commercial year
The week-based year according to ISO-8601 (week 1 starts on Monday and includes January 4)
Equivalent to %b
Hour of the day, 24-hour clock (00..23)
Hour of the day, 12-hour clock (01..12)
Day of the year (001..366)
hour, 24-hour clock, blank-padded ( 0..23)
hour, 12-hour clock, blank-padded ( 0..12)
Millisecond of the second (000..999)
Month of the year (01..12)
Minute of the hour (00..59)
Newline (n)
Fractional seconds digits
Meridian indicator (“AM” or “PM”)
Meridian indicator (“am” or “pm”)
time, 12-hour (same as %I:%M:%S %p)
time, 24-hour (%H:%M)
Number of seconds since 1970-01-01 00:00:00 UTC.
Second of the minute (00..60)
Tab character (t)
time, 24-hour (%H:%M:%S)
Day of the week as a decimal, Monday being 1. (1..7)
Week number of the current year, starting with the first Sunday as the first day of the first week (00..53)
VMS date (%e-%b-%Y)
Week number of year according to ISO 8601 (01..53)
Week number of the current year, starting with the first Monday as the first day of the first week (00..53)
Day of the week (Sunday is 0, 0..6)
Preferred representation for the date alone, no time
Preferred representation for the time alone, no date
Year without a century (00..99)
Year which may include century, if provided
Time zone as hour offset from UTC (e.g. +0900)
Time zone name
Literal “%” character
date(1) (%a %b %e %H:%M:%S %Z %Y)
require 'time' Time.strptime("2000-10-31", "%Y-%m-%d") #=> 2000-10-31 00:00:00 -0500
You must require ‘time’ to use this method.
Returns pathname configuration variable using fpathconf().
name should be a constant under Etc
which begins with PC_
.
The return value is an integer or nil. nil means indefinite limit. (fpathconf() returns -1 but errno is not set.)
require 'etc' IO.pipe {|r, w| p w.pathconf(Etc::PC_PIPE_BUF) #=> 4096 }
Returns a new regexp that is the union of the given patterns:
r = Regexp.union(%w[cat dog]) # => /cat|dog/ r.match('cat') # => #<MatchData "cat"> r.match('dog') # => #<MatchData "dog"> r.match('cog') # => nil
For each pattern that is a string, Regexp.new(pattern)
is used:
Regexp.union('penzance') # => /penzance/ Regexp.union('a+b*c') # => /a\+b\*c/ Regexp.union('skiing', 'sledding') # => /skiing|sledding/ Regexp.union(['skiing', 'sledding']) # => /skiing|sledding/
For each pattern that is a regexp, it is used as is, including its flags:
Regexp.union(/foo/i, /bar/m, /baz/x) # => /(?i-mx:foo)|(?m-ix:bar)|(?x-mi:baz)/ Regexp.union([/foo/i, /bar/m, /baz/x]) # => /(?i-mx:foo)|(?m-ix:bar)|(?x-mi:baz)/
With no arguments, returns /(?!)/
:
Regexp.union # => /(?!)/
If any regexp pattern contains captures, the behavior is unspecified.
Returns the member names of the Struct
descendant as an array:
Customer = Struct.new(:name, :address, :zip) Customer.members # => [:name, :address, :zip]
Returns the member names from self
as an array:
Customer = Struct.new(:name, :address, :zip) Customer.new.members # => [:name, :address, :zip]
Related: to_a
.
Returns clean pathname of self
with consecutive slashes and useless dots removed. The filesystem is not accessed.
If consider_symlink
is true
, then a more conservative algorithm is used to avoid breaking symbolic linkages. This may retain more ..
entries than absolutely necessary, but without accessing the filesystem, this can’t be avoided.
See Pathname#realpath
.
Returns an array of interface addresses. An element of the array is an instance of Socket::Ifaddr
.
This method can be used to find multicast-enabled interfaces:
pp Socket.getifaddrs.reject {|ifaddr| !ifaddr.addr.ip? || (ifaddr.flags & Socket::IFF_MULTICAST == 0) }.map {|ifaddr| [ifaddr.name, ifaddr.ifindex, ifaddr.addr] } #=> [["eth0", 2, #<Addrinfo: 221.186.184.67>], # ["eth0", 2, #<Addrinfo: fe80::216:3eff:fe95:88bb%eth0>]]
Example result on GNU/Linux:
pp Socket.getifaddrs #=> [#<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,0x10000 PACKET[protocol=0 lo hatype=772 HOST hwaddr=00:00:00:00:00:00]>, # #<Socket::Ifaddr eth0 UP,BROADCAST,RUNNING,MULTICAST,0x10000 PACKET[protocol=0 eth0 hatype=1 HOST hwaddr=00:16:3e:95:88:bb] broadcast=PACKET[protocol=0 eth0 hatype=1 HOST hwaddr=ff:ff:ff:ff:ff:ff]>, # #<Socket::Ifaddr sit0 NOARP PACKET[protocol=0 sit0 hatype=776 HOST hwaddr=00:00:00:00]>, # #<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,0x10000 127.0.0.1 netmask=255.0.0.0>, # #<Socket::Ifaddr eth0 UP,BROADCAST,RUNNING,MULTICAST,0x10000 221.186.184.67 netmask=255.255.255.240 broadcast=221.186.184.79>, # #<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,0x10000 ::1 netmask=ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>, # #<Socket::Ifaddr eth0 UP,BROADCAST,RUNNING,MULTICAST,0x10000 fe80::216:3eff:fe95:88bb%eth0 netmask=ffff:ffff:ffff:ffff::>]
Example result on FreeBSD:
pp Socket.getifaddrs #=> [#<Socket::Ifaddr usbus0 UP,0x10000 LINK[usbus0]>, # #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 LINK[re0 3a:d0:40:9a:fe:e8]>, # #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 10.250.10.18 netmask=255.255.255.? (7 bytes for 16 bytes sockaddr_in) broadcast=10.250.10.255>, # #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 fe80:2::38d0:40ff:fe9a:fee8 netmask=ffff:ffff:ffff:ffff::>, # #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 2001:2e8:408:10::12 netmask=UNSPEC>, # #<Socket::Ifaddr plip0 POINTOPOINT,MULTICAST,0x800 LINK[plip0]>, # #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST LINK[lo0]>, # #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST ::1 netmask=ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>, # #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST fe80:4::1 netmask=ffff:ffff:ffff:ffff::>, # #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST 127.0.0.1 netmask=255.?.?.? (5 bytes for 16 bytes sockaddr_in)>]
Obtains the port number for service_name.
If protocol_name is not given, “tcp” is assumed.
Socket.getservbyname("smtp") #=> 25 Socket.getservbyname("shell") #=> 514 Socket.getservbyname("syslog", "udp") #=> 514
Obtains the port number for port.
If protocol_name is not given, “tcp” is assumed.
Socket.getservbyport(80) #=> "www" Socket.getservbyport(514, "tcp") #=> "shell" Socket.getservbyport(514, "udp") #=> "syslog"
Gets a socket option. These are protocol and system specific, see your local system documentation for details. The option is returned as a Socket::Option
object.
level
is an integer, usually one of the SOL_ constants such as Socket::SOL_SOCKET, or a protocol level. A string or symbol of the name, possibly without prefix, is also accepted.
optname
is an integer, usually one of the SO_ constants, such as Socket::SO_REUSEADDR. A string or symbol of the name, possibly without prefix, is also accepted.
Some socket options are integers with boolean values, in this case getsockopt
could be called like this:
reuseaddr = sock.getsockopt(:SOCKET, :REUSEADDR).bool optval = sock.getsockopt(Socket::SOL_SOCKET,Socket::SO_REUSEADDR) optval = optval.unpack "i" reuseaddr = optval[0] == 0 ? false : true
Some socket options are integers with numeric values, in this case getsockopt
could be called like this:
ipttl = sock.getsockopt(:IP, :TTL).int optval = sock.getsockopt(Socket::IPPROTO_IP, Socket::IP_TTL) ipttl = optval.unpack1("i")
Option values may be structs. Decoding them can be complex as it involves examining your system headers to determine the correct definition. An example is a +struct linger+, which may be defined in your system headers as:
struct linger { int l_onoff; int l_linger; };
In this case getsockopt
could be called like this:
# Socket::Option knows linger structure. onoff, linger = sock.getsockopt(:SOCKET, :LINGER).linger optval = sock.getsockopt(Socket::SOL_SOCKET, Socket::SO_LINGER) onoff, linger = optval.unpack "ii" onoff = onoff == 0 ? false : true