returns an addrinfo object for UNIX socket address.
socktype specifies the socket type. If it is omitted, :STREAM is used.
Addrinfo.unix("/tmp/sock") #=> #<Addrinfo: /tmp/sock SOCK_STREAM> Addrinfo.unix("/tmp/sock", :DGRAM) #=> #<Addrinfo: /tmp/sock SOCK_DGRAM>
returns true if addrinfo is UNIX address. returns false otherwise.
Addrinfo.tcp("127.0.0.1", 80).unix? #=> false Addrinfo.tcp("::1", 80).unix? #=> false Addrinfo.unix("/tmp/sock").unix? #=> true
Returns true if coverage stats are currently being collected (after Coverage.start
call, but before Coverage.result
call)
Returns a copy of self
with Unicode normalization applied.
Argument form
must be one of the following symbols (see Unicode normalization forms):
:nfc
: Canonical decomposition, followed by canonical composition.
:nfd
: Canonical decomposition.
:nfkc
: Compatibility decomposition, followed by canonical composition.
:nfkd
: Compatibility decomposition.
The encoding of self
must be one of:
Encoding::UTF_8
Encoding::UTF_16BE
Encoding::UTF_16LE
Encoding::UTF_32BE
Encoding::UTF_32LE
Encoding::GB18030
Encoding::UCS_2BE
Encoding::UCS_4BE
Examples:
"a\u0300".unicode_normalize # => "a" "\u00E0".unicode_normalize(:nfd) # => "a "
Related: String#unicode_normalize!
, String#unicode_normalized?
.
Like String#unicode_normalize
, except that the normalization is performed on self
.
Related String#unicode_normalized?
.
Returns true
if self
is in the given form
of Unicode normalization, false
otherwise. The form
must be one of :nfc
, :nfd
, :nfkc
, or :nfkd
.
Examples:
"a\u0300".unicode_normalized? # => false "a\u0300".unicode_normalized?(:nfd) # => true "\u00E0".unicode_normalized? # => true "\u00E0".unicode_normalized?(:nfd) # => false
Raises an exception if self
is not in a Unicode encoding:
s = "\xE0".force_encoding(Encoding::ISO_8859_1) s.unicode_normalized? # Raises Encoding::CompatibilityError.
Related: String#unicode_normalize
, String#unicode_normalize!
.
Returns the socket path as a string.
Addrinfo.unix("/tmp/sock").unix_path #=> "/tmp/sock"
Adds a post-uninstall hook that will be passed a Gem::Uninstaller
instance and the spec that was uninstalled when Gem::Uninstaller#uninstall
is called
Adds a pre-uninstall hook that will be passed an Gem::Uninstaller
instance and the spec that will be uninstalled when Gem::Uninstaller#uninstall
is called
Performs the uninstall of the gem. This removes the spec, the Gem
directory, and the cached .gem file.
creates a UNIX server socket on path
If no block given, it returns a listening socket.
If a block is given, it is called with the socket and the block value is returned. When the block exits, the socket is closed and the socket file is removed.
socket = Socket.unix_server_socket("/tmp/s") p socket #=> #<Socket:fd 3> p socket.local_address #=> #<Addrinfo: /tmp/s SOCK_STREAM> Socket.unix_server_socket("/tmp/sock") {|s| p s #=> #<Socket:fd 3> p s.local_address #=> # #<Addrinfo: /tmp/sock SOCK_STREAM> }
creates a UNIX socket server on path. It calls the block for each socket accepted.
If host is specified, it is used with port to determine the server ports.
The socket is not closed when the block returns. So application should close it.
This method deletes the socket file pointed by path at first if the file is a socket file and it is owned by the user of the application. This is safe only if the directory of path is not changed by a malicious user. So don’t use /tmp/malicious-users-directory/socket. Note that /tmp/socket and /tmp/your-private-directory/socket is safe assuming that /tmp has sticky bit.
# Sequential echo server. # It services only one client at a time. Socket.unix_server_loop("/tmp/sock") {|sock, client_addrinfo| begin IO.copy_stream(sock, sock) ensure sock.close end }
Unpacks sockaddr into path.
sockaddr should be a string or an addrinfo for AF_UNIX.
sockaddr = Socket.sockaddr_un("/tmp/sock") p Socket.unpack_sockaddr_un(sockaddr) #=> "/tmp/sock"
Creates a new Socket::AncillaryData
object which contains file descriptors as data.
p Socket::AncillaryData.unix_rights(STDERR) #=> #<Socket::AncillaryData: UNIX SOCKET RIGHTS 2>
returns the array of IO
objects for SCM_RIGHTS control message in UNIX domain socket.
The class of the IO
objects in the array is IO
or Socket
.
The array is attached to ancillarydata when it is instantiated. For example, BasicSocket#recvmsg
attach the array when receives a SCM_RIGHTS control message and :scm_rights=>true option is given.
# recvmsg needs :scm_rights=>true for unix_rights s1, s2 = UNIXSocket.pair p s1 #=> #<UNIXSocket:fd 3> s1.sendmsg "stdin and a socket", 0, nil, Socket::AncillaryData.unix_rights(STDIN, s1) _, _, _, ctl = s2.recvmsg(:scm_rights=>true) p ctl #=> #<Socket::AncillaryData: UNIX SOCKET RIGHTS 6 7> p ctl.unix_rights #=> [#<IO:fd 6>, #<Socket:fd 7>] p File.identical?(STDIN, ctl.unix_rights[0]) #=> true p File.identical?(s1, ctl.unix_rights[1]) #=> true # If :scm_rights=>true is not given, unix_rights returns nil s1, s2 = UNIXSocket.pair s1.sendmsg "stdin and a socket", 0, nil, Socket::AncillaryData.unix_rights(STDIN, s1) _, _, _, ctl = s2.recvmsg p ctl #=> #<Socket::AncillaryData: UNIX SOCKET RIGHTS 6 7> p ctl.unix_rights #=> nil
Uninstalls gem spec
Returns the offset from the start of the file for the given byte offset counting in code units for the given encoding.
This method is tested with UTF-8, UTF-16, and UTF-32. If there is the concept of code units that differs from the number of characters in other encodings, it is not captured here.
We purposefully replace invalid and undefined characters with replacement characters in this conversion. This happens for two reasons. First, it’s possible that the given byte offset will not occur on a character boundary. Second, it’s possible that the source code will contain a character that has no equivalent in the given encoding.
Generate a cache that targets a specific encoding for calculating code unit offsets.
Returns the column number in code units for the given encoding for the given byte offset.
Returns the offset from the start of the file for the given byte offset counting in code units for the given encoding.
This method is tested with UTF-8, UTF-16, and UTF-32. If there is the concept of code units that differs from the number of characters in other encodings, it is not captured here.
Returns a cache that is the identity function in order to maintain the same interface. We can do this because code units are always equivalent to byte offsets for ASCII-only sources.
Specialized version of ‘code_units_column` that does not depend on `code_units_offset`, which is a more expensive operation. This is essentially the same as `Prism::Source#column`.
Create a code units cache for the given encoding.