Results for: "strip"

Raises PStore::Error if the calling code is not in a PStore#transaction.

Returns the original name of the method.

class C
  def foo; end
  alias bar foo
end
C.instance_method(:bar).original_name # => :foo

Returns the original name of the method.

class C
  def foo; end
  alias bar foo
end
C.instance_method(:bar).original_name # => :foo

Returns an array of the names of the thread-local variables (as Symbols).

thr = Thread.new do
  Thread.current.thread_variable_set(:cat, 'meow')
  Thread.current.thread_variable_set("dog", 'woof')
end
thr.join               #=> #<Thread:0x401b3f10 dead>
thr.thread_variables   #=> [:dog, :cat]

Note that these are not fiber local variables. Please see Thread#[] and Thread#thread_variable_get for more details.

Returns true if the given string (or symbol) exists as a thread-local variable.

me = Thread.current
me.thread_variable_set(:oliver, "a")
me.thread_variable?(:oliver)    #=> true
me.thread_variable?(:stanley)   #=> false

Note that these are not fiber local variables. Please see Thread#[] and Thread#thread_variable_get for more details.

Returns the execution stack for the target thread—an array containing backtrace location objects.

See Thread::Backtrace::Location for more information.

This method behaves similarly to Kernel#caller_locations except it applies to a specific thread.

In general, while a TracePoint callback is running, other registered callbacks are not called to avoid confusion by reentrance. This method allows the reentrance in a given block. This method should be used carefully, otherwise the callback can be easily called infinitely.

If this method is called when the reentrance is already allowed, it raises a RuntimeError.

Example:

# Without reentry
# ---------------

line_handler = TracePoint.new(:line) do |tp|
  next if tp.path != __FILE__ # only work in this file
  puts "Line handler"
  binding.eval("class C; end")
end.enable

class_handler = TracePoint.new(:class) do |tp|
  puts "Class handler"
end.enable

class B
end

# This script will print "Class handler" only once: when inside :line
# handler, all other handlers are ignored

# With reentry
# ------------

line_handler = TracePoint.new(:line) do |tp|
  next if tp.path != __FILE__ # only work in this file
  next if (__LINE__..__LINE__+3).cover?(tp.lineno) # don't be invoked from itself
  puts "Line handler"
  TracePoint.allow_reentry { binding.eval("class C; end") }
end.enable

class_handler = TracePoint.new(:class) do |tp|
  puts "Class handler"
end.enable

class B
end

# This wil print "Class handler" twice: inside allow_reentry block in :line
# handler, other handlers are enabled.

Note that the example shows the principal effect of the method, but its practical usage is for debugging libraries that sometimes require other libraries hooks to not be affected by debugger being inside trace point handling. Precautions should be taken against infinite recursion in this case (note that we needed to filter out calls by itself from :line handler, otherwise it will call itself infinitely).

Returns an array of the names of global variables. This includes special regexp global variables such as $~ and $+, but does not include the numbered regexp global variables ($1, $2, etc.).

global_variables.grep /std/   #=> [:$stdin, :$stdout, :$stderr]

Controls tracing of assignments to global variables. The parameter symbol identifies the variable (as either a string name or a symbol identifier). cmd (which may be a string or a Proc object) or block is executed whenever the variable is assigned. The block or Proc object receives the variable’s new value as a parameter. Also see untrace_var.

trace_var :$_, proc {|v| puts "$_ is now '#{v}'" }
$_ = "hello"
$_ = ' there'

produces:

$_ is now 'hello'
$_ is now ' there'

Removes tracing for the specified command on the given global variable and returns nil. If no command is specified, removes all tracing for that variable and returns an array containing the commands actually removed.

Returns the names of the current local variables.

fred = 1
for i in 1..10
   # ...
end
local_variables   #=> [:fred, :i]

Calls the given block with each element, converting multiple values from yield to an array; returns self:

a = []
(1..4).each_entry {|element| a.push(element) } # => 1..4
a # => [1, 2, 3, 4]

a = []
h = {foo: 0, bar: 1, baz:2}
h.each_entry {|element| a.push(element) }
# => {:foo=>0, :bar=>1, :baz=>2}
a # => [[:foo, 0], [:bar, 1], [:baz, 2]]

class Foo
  include Enumerable
  def each
    yield 1
    yield 1, 2
    yield
  end
end
Foo.new.each_entry {|yielded| p yielded }

Output:

1
[1, 2]
nil

With no block given, returns an Enumerator.

No documentation available

Returns the last Error of the current executing Thread or nil if none

Sets the last Error of the current executing Thread to error

Arguments obj and opts here are the same as arguments obj and opts in JSON.generate.

By default, generates JSON data without checking for circular references in obj (option max_nesting set to false, disabled).

Raises an exception if obj contains circular references:

a = []; b = []; a.push(b); b.push(a)
# Raises SystemStackError (stack level too deep):
JSON.fast_generate(a)
No documentation available

Turns FIPS mode on or off. Turning on FIPS mode will obviously only have an effect for FIPS-capable installations of the OpenSSL library. Trying to do so otherwise will result in an error.

Examples

OpenSSL.fips_mode = true   # turn FIPS mode on
OpenSSL.fips_mode = false  # and off again

Returns true if the named file is writable by the real user and group id of this process. See access(3).

Note that some OS-level security features may cause this to return true even though the file is not writable by the real user/group.

If file_name is writable by others, returns an integer representing the file permission bits of file_name. Returns nil otherwise. The meaning of the bits is platform dependent; on Unix systems, see stat(2).

file_name can be an IO object.

File.world_writable?("/tmp")                  #=> 511
m = File.world_writable?("/tmp")
sprintf("%o", m)                              #=> "777"

Returns information for heaps in the GC.

If the first optional argument, heap_name, is passed in and not nil, it returns a Hash containing information about the particular heap. Otherwise, it will return a Hash with heap names as keys and a Hash containing information about the heap as values.

If the second optional argument, hash_or_key, is given as Hash, it will be overwritten and returned. This is intended to avoid the probe effect.

If both optional arguments are passed in and the second optional argument is a symbol, it will return a Numeric of the value for the particular heap.

On CRuby, heap_name is of the type Integer but may be of type String on other implementations.

The contents of the hash are implementation specific and may change in the future without notice.

If the optional argument, hash, is given, it is overwritten and returned.

This method is only expected to work on CRuby.

The hash includes the following keys about the internal information in the GC:

slot_size

The slot size of the heap in bytes.

heap_allocatable_pages

The number of pages that can be allocated without triggering a new garbage collection cycle.

heap_eden_pages

The number of pages in the eden heap.

heap_eden_slots

The total number of slots in all of the pages in the eden heap.

heap_tomb_pages

The number of pages in the tomb heap. The tomb heap only contains pages that do not have any live objects.

heap_tomb_slots

The total number of slots in all of the pages in the tomb heap.

total_allocated_pages

The total number of pages that have been allocated in the heap.

total_freed_pages

The total number of pages that have been freed and released back to the system in the heap.

force_major_gc_count

The number of times major garbage collection cycles this heap has forced to start due to running out of free slots.

force_incremental_marking_finish_count

The number of times this heap has forced incremental marking to complete due to running out of pooled slots.

Try to activate a gem containing path. Returns true if activation succeeded or wasn’t needed because it was already activated. Returns false if it can’t find the path in a gem.

Adds a post-build hook that will be passed an Gem::Installer instance when Gem::Installer#install is called. The hook is called after the gem has been extracted and extensions have been built but before the executables or gemspec has been written. If the hook returns false then the gem’s files will be removed and the install will be aborted.

Adds a post-installs hook that will be passed a Gem::DependencyInstaller and a list of installed specifications when Gem::DependencyInstaller#install is complete

Adds a hook that will get run after Gem::Specification.reset is run.

Search took: 6ms  ·  Total Results: 1743