Results for: "fnmatch"

Generate a string that randomly draws from a source array of characters.

The argument source specifies the array of characters from which to generate the string. The argument n specifies the length, in characters, of the string to be generated.

The result may contain whatever characters are in the source array.

Example
require 'random/formatter'

prng.choose([*'l'..'r'], 16) #=> "lmrqpoonmmlqlron"
prng.choose([*'0'..'9'], 5)  #=> "27309"

Simple deprecation method that deprecates name by wrapping it up in a dummy method. It warns on each call to the dummy method telling the user of repl (unless repl is :none) and the year/month that it is planned to go away.

A Zlib::Inflate#inflate wrapper

With a block given, iterates over the elements of self, passing each array index to the block; returns self:

Example
a = [:foo, 'bar', 2]
a.each_index {|index|  puts "#{index} #{a[index]}" }

Output:

0 foo
1 bar
2 2

Allows the array to be modified during iteration:

Example
a = [:foo, 'bar', 2]
a.each_index {|index| puts index; a.clear if index > 0 }
a # => []

Output:

Example
0
1

With no block given, returns a new Enumerator.

Related: see Methods for Iterating.

When a block given, iterates backwards over the elements of self, passing, in reverse order, each element to the block; returns self:

Example
a = []
[0, 1, 2].reverse_each {|element| a.push(element) }
a # => [2, 1, 0]

Allows the array to be modified during iteration:

Example
a = ['a', 'b', 'c']
a.reverse_each {|element| a.clear if element.start_with?('b') }
a # => []

When no block given, returns a new Enumerator.

Related: see Methods for Iterating.

Returns elements from self in a new array; does not modify self.

The objects included in the returned array are the elements of self selected by the given specifiers, each of which must be a numeric index or a Range.

In brief:

Example
a = ['a', 'b', 'c', 'd']

# Index specifiers.
a.values_at(2, 0, 2, 0)     # => ["c", "a", "c", "a"] # May repeat.
a.values_at(-4, -3, -2, -1) # => ["a", "b", "c", "d"] # Counts backwards if negative.
a.values_at(-50, 50)        # => [nil, nil]           # Outside of self.

# Range specifiers.
a.values_at(1..3)       # => ["b", "c", "d"] # From range.begin to range.end.
a.values_at(1...3)      # => ["b", "c"]      # End excluded.
a.values_at(3..1)       # => []              # No such elements.

a.values_at(-3..3)  # => ["b", "c", "d"]     # Negative range.begin counts backwards.
a.values_at(-50..3)                          # Raises RangeError.

a.values_at(1..-2)  # => ["b", "c"]          # Negative range.end counts backwards.
a.values_at(1..-50) # => []                  # No such elements.

# Mixture of specifiers.
a.values_at(2..3, 3, 0..1, 0) # => ["c", "d", "d", "a", "b", "a"]

With no specifiers given, returns a new empty array:

Example
a = ['a', 'b', 'c', 'd']
a.values_at # => []

For each numeric specifier index, includes an element:

The given indexes may be in any order, and may repeat:

Example
a.values_at(2, 0, 1, 0, 2) # => ["c", "a", "b", "a", "c"]

For each index that is out-of-range, includes nil:

Example
a.values_at(4, -5) # => [nil, nil]

For each Range specifier range, includes elements according to range.begin and range.end:

The given ranges may be in any order and may repeat:

Example
a.values_at(2..3, 0..1, 2..3) # => ["c", "d", "a", "b", "c", "d"]

The given specifiers may be any mixture of indexes and ranges:

Example
a.values_at(3, 1..2, 0, 2..3) # => ["d", "b", "c", "a", "c", "d"]

Related: see Methods for Fetching.

Removes the element of self at the given index, which must be an integer-convertible object.

When index is non-negative, deletes the element at offset index:

Example
a = [:foo, 'bar', 2]
a.delete_at(1) # => "bar"
a # => [:foo, 2]

When index is negative, counts backward from the end of the array:

Example
a = [:foo, 'bar', 2]
a.delete_at(-2) # => "bar"
a # => [:foo, 2]

When index is out of range, returns nil.

Example
a = [:foo, 'bar', 2]
a.delete_at(3)  # => nil
a.delete_at(-4) # => nil

Related: see Methods for Deleting.

Returns the integer index of the element from self found by a binary search, or nil if the search found no suitable element.

See Binary Searching.

Related: see Methods for Fetching.

See as_json.

With a block given, forms the substrings (“lines”) that are the result of splitting self at each occurrence of the given line separator line_sep; passes each line to the block; returns self:

Example
s = <<~EOT
This is the first line.
This is line two.

This is line four.
This is line five.
EOT

s.each_line {|line| p line }

Output:

Example
"This is the first line.\n"
"This is line two.\n"
"\n"
"This is line four.\n"
"This is line five.\n"

With a different line_sep:

Example
s.each_line(' is ') {|line| p line }

Output:

Example
"This is "
"the first line.\nThis is "
"line two.\n\nThis is "
"line four.\nThis is "
"line five.\n"

With chomp as true, removes the trailing line_sep from each line:

Example
s.each_line(chomp: true) {|line| p line }

Output:

Example
"This is the first line."
"This is line two."
""
"This is line four."
"This is line five."

With an empty string as line_sep, forms and passes “paragraphs” by splitting at each occurrence of two or more newlines:

Example
s.each_line('') {|line| p line }

Output:

Example
"This is the first line.\nThis is line two.\n\n"
"This is line four.\nThis is line five.\n"

With no block given, returns an enumerator.

Calls the given block with each successive byte from self; returns self:

Example
'hello'.each_byte {|byte| print byte, ' ' }
print "\n"
'тест'.each_byte {|byte| print byte, ' ' }
print "\n"
'こんにちは'.each_byte {|byte| print byte, ' ' }
print "\n"

Output:

104 101 108 108 111
209 130 208 181 209 129 209 130
227 129 147 227 130 147 227 129 171 227 129 161 227 129 175

Returns an enumerator if no block is given.

Calls the given block with each successive codepoint from self; each codepoint is the integer value for a character; returns self:

Example
'hello'.each_codepoint {|codepoint| print codepoint, ' ' }
print "\n"
'тест'.each_codepoint {|codepoint| print codepoint, ' ' }
print "\n"
'こんにちは'.each_codepoint {|codepoint| print codepoint, ' ' }
print "\n"

Output:

104 101 108 108 111
1090 1077 1089 1090
12371 12435 12395 12385 12399

Returns an enumerator if no block is given.

Returns a copy of self with Unicode normalization applied.

Argument form must be one of the following symbols (see Unicode normalization forms):

The encoding of self must be one of:

Examples:

Example
"a\u0300".unicode_normalize      # => "a"
"\u00E0".unicode_normalize(:nfd) # => "a "

Related: String#unicode_normalize!, String#unicode_normalized?.

Like String#unicode_normalize, except that the normalization is performed on self.

Related String#unicode_normalized?.

Returns true if self is in the given form of Unicode normalization, false otherwise. The form must be one of :nfc, :nfd, :nfkc, or :nfkd.

Examples:

Example
"a\u0300".unicode_normalized?       # => false
"a\u0300".unicode_normalized?(:nfd) # => true
"\u00E0".unicode_normalized?        # => true
"\u00E0".unicode_normalized?(:nfd)  # => false

Raises an exception if self is not in a Unicode encoding:

Example
s = "\xE0".force_encoding(Encoding::ISO_8859_1)
s.unicode_normalized? # Raises Encoding::CompatibilityError.

Related: String#unicode_normalize, String#unicode_normalize!.

Returns the next-larger representable Float.

These examples show the internally stored values (64-bit hexadecimal) for each Float f and for the corresponding f.next_float:

Example
f = 0.0      # 0x0000000000000000
f.next_float # 0x0000000000000001

f = 0.01     # 0x3f847ae147ae147b
f.next_float # 0x3f847ae147ae147c

In the remaining examples here, the output is shown in the usual way (result to_s):

Example
0.01.next_float    # => 0.010000000000000002
1.0.next_float     # => 1.0000000000000002
100.0.next_float   # => 100.00000000000001

f = 0.01
(0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.next_float }

Output:

 0 0x1.47ae147ae147bp-7 0.01
 1 0x1.47ae147ae147cp-7 0.010000000000000002
 2 0x1.47ae147ae147dp-7 0.010000000000000004
 3 0x1.47ae147ae147ep-7 0.010000000000000005

f = 0.0; 100.times { f += 0.1 }
f                           # => 9.99999999999998       # should be 10.0 in the ideal world.
10-f                        # => 1.9539925233402755e-14 # the floating point error.
10.0.next_float-10          # => 1.7763568394002505e-15 # 1 ulp (unit in the last place).
(10-f)/(10.0.next_float-10) # => 11.0                   # the error is 11 ulp.
(10-f)/(10*Float::EPSILON)  # => 8.8                    # approximation of the above.
"%a" % 10                   # => "0x1.4p+3"
"%a" % f                    # => "0x1.3fffffffffff5p+3" # the last hex digit is 5.  16 - 5 = 11 ulp.

Related: Float#prev_float

Returns the next-smaller representable Float.

These examples show the internally stored values (64-bit hexadecimal) for each Float f and for the corresponding f.pev_float:

Example
f = 5e-324   # 0x0000000000000001
f.prev_float # 0x0000000000000000

f = 0.01     # 0x3f847ae147ae147b
f.prev_float # 0x3f847ae147ae147a

In the remaining examples here, the output is shown in the usual way (result to_s):

Example
0.01.prev_float   # => 0.009999999999999998
1.0.prev_float    # => 0.9999999999999999
100.0.prev_float  # => 99.99999999999999

f = 0.01
(0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.prev_float }

Output:

0 0x1.47ae147ae147bp-7 0.01
1 0x1.47ae147ae147ap-7 0.009999999999999998
2 0x1.47ae147ae1479p-7 0.009999999999999997
3 0x1.47ae147ae1478p-7 0.009999999999999995

Related: Float#next_float.

Like backtrace, but returns each line of the execution stack as a Thread::Backtrace::Location. Accepts the same arguments as backtrace.

Example
f = Fiber.new { Fiber.yield }
f.resume
loc = f.backtrace_locations.first
loc.label  #=> "yield"
loc.path   #=> "test.rb"
loc.lineno #=> 1

Sets the Fiber scheduler for the current thread. If the scheduler is set, non-blocking fibers (created by Fiber.new with blocking: false, or by Fiber.schedule) call that scheduler’s hook methods on potentially blocking operations, and the current thread will call scheduler’s close method on finalization (allowing the scheduler to properly manage all non-finished fibers).

scheduler can be an object of any class corresponding to Fiber::Scheduler. Its implementation is up to the user.

See also the “Non-blocking fibers” section in class docs.

Returns the Fiber scheduler, that was last set for the current thread with Fiber.set_scheduler if and only if the current fiber is non-blocking.

Returns the dirpath string that was used to create self (or nil if created by method Dir.for_fd):

Example
Dir.new('example').path # => "example"

Converts a pathname to an absolute pathname. Relative paths are referenced from the current working directory of the process unless dir_string is given, in which case it will be used as the starting point. The given pathname may start with a “~”, which expands to the process owner’s home directory (the environment variable HOME must be set correctly). “~user” expands to the named user’s home directory.

Example
File.expand_path("~oracle/bin")           #=> "/home/oracle/bin"

A simple example of using dir_string is as follows.

Example
File.expand_path("ruby", "/usr/bin")      #=> "/usr/bin/ruby"

A more complex example which also resolves parent directory is as follows. Suppose we are in bin/mygem and want the absolute path of lib/mygem.rb.

Example
File.expand_path("../../lib/mygem.rb", __FILE__)
#=> ".../path/to/project/lib/mygem.rb"

So first it resolves the parent of __FILE__, that is bin/, then go to the parent, the root of the project and appends lib/mygem.rb.

Converts a pathname to an absolute pathname. Relative paths are referenced from the current working directory of the process unless dir_string is given, in which case it will be used as the starting point. If the given pathname starts with a “~” it is NOT expanded, it is treated as a normal directory name.

Example
File.absolute_path("~oracle/bin")       #=> "<relative_path>/~oracle/bin"

Returns true if file_name is an absolute path, and false otherwise.

Example
File.absolute_path?("c:/foo")     #=> false (on Linux), true (on Windows)

Returns whether ASCII-compatible or not.

Example
Encoding::UTF_8.ascii_compatible?     #=> true
Encoding::UTF_16BE.ascii_compatible?  #=> false
Search took: 3ms  ·  Total Results: 1776