Results for: "module_function"

Returns an array of Refinement defined within the receiver.

module A
  refine Integer do
  end

  refine String do
  end
end

p A.refinements

produces:

[#<refinement:Integer@A>, #<refinement:String@A>]

Registers filename to be loaded (using Kernel::require) the first time that const (which may be a String or a symbol) is accessed in the namespace of mod.

module A
end
A.autoload(:B, "b")
A::B.doit            # autoloads "b"

If const in mod is defined as autoload, the file name to be loaded is replaced with filename. If const is defined but not as autoload, does nothing.

Returns filename to be loaded if name is registered as autoload in the namespace of mod or one of its ancestors.

module A
end
A.autoload(:B, "b")
A.autoload?(:B)            #=> "b"

If inherit is false, the lookup only checks the autoloads in the receiver:

class A
  autoload :CONST, "const.rb"
end

class B < A
end

B.autoload?(:CONST)          #=> "const.rb", found in A (ancestor)
B.autoload?(:CONST, false)   #=> nil, not found in B itself

The equivalent of included, but for extended modules.

module A
  def self.extended(mod)
    puts "#{self} extended in #{mod}"
  end
end
module Enumerable
  extend A
end
 # => prints "A extended in Enumerable"

The equivalent of included, but for prepended modules.

module A
  def self.prepended(mod)
    puts "#{self} prepended to #{mod}"
  end
end
module Enumerable
  prepend A
end
 # => prints "A prepended to Enumerable"

Prevents further modifications to mod.

This method returns self.

Case Equality—Returns true if obj is an instance of mod or an instance of one of mod’s descendants. Of limited use for modules, but can be used in case statements to classify objects by class.

Equality — At the Object level, == returns true only if obj and other are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.

Unlike ==, the equal? method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b) if and only if a is the same object as b):

obj = "a"
other = obj.dup

obj == other      #=> true
obj.equal? other  #=> false
obj.equal? obj    #=> true

The eql? method returns true if obj and other refer to the same hash key. This is used by Hash to test members for equality. For any pair of objects where eql? returns true, the hash value of both objects must be equal. So any subclass that overrides eql? should also override hash appropriately.

For objects of class Object, eql? is synonymous with ==. Subclasses normally continue this tradition by aliasing eql? to their overridden == method, but there are exceptions. Numeric types, for example, perform type conversion across ==, but not across eql?, so:

1 == 1.0     #=> true
1.eql? 1.0   #=> false

Comparison—Returns -1, 0, +1 or nil depending on whether module includes other_module, they are the same, or if module is included by other_module.

Returns nil if module has no relationship with other_module, if other_module is not a module, or if the two values are incomparable.

Returns true if mod is a subclass of other. Returns false if mod is the same as other or mod is an ancestor of other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)

Returns true if mod is a subclass of other or is the same as other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)

Returns true if mod is an ancestor of other. Returns false if mod is the same as other or mod is a descendant of other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)

Returns true if mod is an ancestor of other, or the two modules are the same. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)

Returns the name of the module mod. Returns nil for anonymous modules.

The first form is equivalent to attr_reader. The second form is equivalent to attr_accessor(name) but deprecated. The last form is equivalent to attr_reader(name) but deprecated. Returns an array of defined method names as symbols.

Creates a new anonymous module. If a block is given, it is passed the module object, and the block is evaluated in the context of this module like module_eval.

fred = Module.new do
  def meth1
    "hello"
  end
  def meth2
    "bye"
  end
end
a = "my string"
a.extend(fred)   #=> "my string"
a.meth1          #=> "hello"
a.meth2          #=> "bye"

Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.

With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility. String arguments are converted to symbols. An Array of Symbols and/or Strings is also accepted. If a single argument is passed, it is returned. If no argument is passed, nil is returned. If multiple arguments are passed, the arguments are returned as an array.

With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility. String arguments are converted to symbols. An Array of Symbols and/or Strings is also accepted. If a single argument is passed, it is returned. If no argument is passed, nil is returned. If multiple arguments are passed, the arguments are returned as an array.

module Mod
  def a()  end
  def b()  end
  private
  def c()  end
  private :a
end
Mod.private_instance_methods   #=> [:a, :c]

Note that to show a private method on RDoc, use :doc:.

Invoked as a callback whenever an instance method is removed from the receiver.

module Chatty
  def self.method_removed(method_name)
    puts "Removing #{method_name.inspect}"
  end
  def self.some_class_method() end
  def some_instance_method() end
  class << self
    remove_method :some_class_method
  end
  remove_method :some_instance_method
end

produces:

Removing :some_instance_method

Removes the method identified by symbol from the current class. For an example, see Module#undef_method. String arguments are converted to symbols.

Returns a list of the protected instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

Returns a list of the undefined instance methods defined in mod. The undefined methods of any ancestors are not included.

Invoked as a callback whenever an instance method is added to the receiver.

module Chatty
  def self.method_added(method_name)
    puts "Adding #{method_name.inspect}"
  end
  def self.some_class_method() end
  def some_instance_method() end
end

produces:

Adding :some_instance_method

Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false.

class One
  @@var1 = 1
end
class Two < One
  @@var2 = 2
end
One.class_variables          #=> [:@@var1]
Two.class_variables          #=> [:@@var2, :@@var1]
Two.class_variables(false)   #=> [:@@var2]

Defines an instance method in the receiver. The method parameter can be a Proc, a Method or an UnboundMethod object. If a block is specified, it is used as the method body. If a block or the method parameter has parameters, they’re used as method parameters. This block is evaluated using instance_eval.

class A
  def fred
    puts "In Fred"
  end
  def create_method(name, &block)
    self.class.define_method(name, &block)
  end
  define_method(:wilma) { puts "Charge it!" }
  define_method(:flint) {|name| puts "I'm #{name}!"}
end
class B < A
  define_method(:barney, instance_method(:fred))
end
a = B.new
a.barney
a.wilma
a.flint('Dino')
a.create_method(:betty) { p self }
a.betty

produces:

In Fred
Charge it!
I'm Dino!
#<B:0x401b39e8>
Search took: 7ms  ·  Total Results: 3346