Results for: "module_function"

Returns the number of threads waiting on the queue.

Returns a conversion path.

p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP")
#=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
#    [#<Encoding:UTF-8>, #<Encoding:EUC-JP>]]

p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP", universal_newline: true)
or
p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP", newline: :universal)
#=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
#    [#<Encoding:UTF-8>, #<Encoding:EUC-JP>],
#    "universal_newline"]

p Encoding::Converter.search_convpath("ISO-8859-1", "UTF-32BE", universal_newline: true)
or
p Encoding::Converter.search_convpath("ISO-8859-1", "UTF-32BE", newline: :universal)
#=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
#    "universal_newline",
#    [#<Encoding:UTF-8>, #<Encoding:UTF-32BE>]]

primitive_errinfo returns important information regarding the last error as a 5-element array:

[result, enc1, enc2, error_bytes, readagain_bytes]

result is the last result of primitive_convert.

Other elements are only meaningful when result is :invalid_byte_sequence, :incomplete_input or :undefined_conversion.

enc1 and enc2 indicate a conversion step as a pair of strings. For example, a converter from EUC-JP to ISO-8859-1 converts a string as follows: EUC-JP -> UTF-8 -> ISO-8859-1. So [enc1, enc2] is either [“EUC-JP”, “UTF-8”] or [“UTF-8”, “ISO-8859-1”].

error_bytes and readagain_bytes indicate the byte sequences which caused the error. error_bytes is discarded portion. readagain_bytes is buffered portion which is read again on next conversion.

Example:

# \xff is invalid as EUC-JP.
ec = Encoding::Converter.new("EUC-JP", "Shift_JIS")
ec.primitive_convert(src="\xff", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "EUC-JP", "Shift_JIS", "\xFF", ""]

# HIRAGANA LETTER A (\xa4\xa2 in EUC-JP) is not representable in ISO-8859-1.
# Since this error is occur in UTF-8 to ISO-8859-1 conversion,
# error_bytes is HIRAGANA LETTER A in UTF-8 (\xE3\x81\x82).
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4\xa2", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:undefined_conversion, "UTF-8", "ISO-8859-1", "\xE3\x81\x82", ""]

# partial character is invalid
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:incomplete_input, "EUC-JP", "UTF-8", "\xA4", ""]

# Encoding::Converter::PARTIAL_INPUT prevents invalid errors by
# partial characters.
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4", dst="", nil, 10, Encoding::Converter::PARTIAL_INPUT)
p ec.primitive_errinfo
#=> [:source_buffer_empty, nil, nil, nil, nil]

# \xd8\x00\x00@ is invalid as UTF-16BE because
# no low surrogate after high surrogate (\xd8\x00).
# It is detected by 3rd byte (\00) which is part of next character.
# So the high surrogate (\xd8\x00) is discarded and
# the 3rd byte is read again later.
# Since the byte is buffered in ec, it is dropped from src.
ec = Encoding::Converter.new("UTF-16BE", "UTF-8")
ec.primitive_convert(src="\xd8\x00\x00@", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "UTF-16BE", "UTF-8", "\xD8\x00", "\x00"]
p src
#=> "@"

# Similar to UTF-16BE, \x00\xd8@\x00 is invalid as UTF-16LE.
# The problem is detected by 4th byte.
ec = Encoding::Converter.new("UTF-16LE", "UTF-8")
ec.primitive_convert(src="\x00\xd8@\x00", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "UTF-16LE", "UTF-8", "\x00\xD8", "@\x00"]
p src
#=> ""

Synonym for CGI.unescapeHTML(str)

Consumes size bytes from the buffer

Reads at most maxlen bytes in the non-blocking manner.

When no data can be read without blocking it raises OpenSSL::SSL::SSLError extended by IO::WaitReadable or IO::WaitWritable.

IO::WaitReadable means SSL needs to read internally so read_nonblock should be called again when the underlying IO is readable.

IO::WaitWritable means SSL needs to write internally so read_nonblock should be called again after the underlying IO is writable.

OpenSSL::Buffering#read_nonblock needs two rescue clause as follows:

# emulates blocking read (readpartial).
begin
  result = ssl.read_nonblock(maxlen)
rescue IO::WaitReadable
  IO.select([io])
  retry
rescue IO::WaitWritable
  IO.select(nil, [io])
  retry
end

Note that one reason that read_nonblock writes to the underlying IO is when the peer requests a new TLS/SSL handshake. See openssl the FAQ for more details. www.openssl.org/support/faq.html

By specifying a keyword argument exception to false, you can indicate that read_nonblock should not raise an IO::Wait*able exception, but return the symbol :wait_writable or :wait_readable instead. At EOF, it will return nil instead of raising EOFError.

Writes s in the non-blocking manner.

If there is buffered data, it is flushed first. This may block.

write_nonblock returns number of bytes written to the SSL connection.

When no data can be written without blocking it raises OpenSSL::SSL::SSLError extended by IO::WaitReadable or IO::WaitWritable.

IO::WaitReadable means SSL needs to read internally so write_nonblock should be called again after the underlying IO is readable.

IO::WaitWritable means SSL needs to write internally so write_nonblock should be called again after underlying IO is writable.

So OpenSSL::Buffering#write_nonblock needs two rescue clause as follows.

# emulates blocking write.
begin
  result = ssl.write_nonblock(str)
rescue IO::WaitReadable
  IO.select([io])
  retry
rescue IO::WaitWritable
  IO.select(nil, [io])
  retry
end

Note that one reason that write_nonblock reads from the underlying IO is when the peer requests a new TLS/SSL handshake. See the openssl FAQ for more details. www.openssl.org/support/faq.html

By specifying a keyword argument exception to false, you can indicate that write_nonblock should not raise an IO::Wait*able exception, but return the symbol :wait_writable or :wait_readable instead.

See IO#write_nonblock

No documentation available

Returns a Range object representing the value of field 'Content-Range', or nil if no such field exists; see Content-Range response header:

res = Net::HTTP.get_response(hostname, '/todos/1')
res['Content-Range'] # => nil
res['Content-Range'] = 'bytes 0-499/1000'
res['Content-Range'] # => "bytes 0-499/1000"
res.content_range    # => 0..499

Returns the media type from the value of field 'Content-Type', or nil if no such field exists; see Content-Type response header:

res = Net::HTTP.get_response(hostname, '/todos/1')
res['content-type'] # => "application/json; charset=utf-8"
res.content_type    # => "application/json"
No documentation available

returns “type/subtype” which is MIME Content-Type. It is downcased for canonicalization. Content-Type parameters are stripped.

Initializes instance variable.

No documentation available

A convenience method which is same as follows:

group(1, '#<' + obj.class.name, '>') { ... }

A present standard failsafe for pretty printing any given Object

Enumerates the trusted certificates via Gem::Security::TrustDir.

No documentation available

If response is an HTTP Success (2XX) response, yields the response if a block was given or shows the response body to the user.

If the response was not successful, shows an error to the user including the error_prefix and the response body. If the response was a permanent redirect, shows an error to the user including the redirect location.

No documentation available
No documentation available

Returns true for IPv6 multicast node-local scope address. It returns false otherwise.

Render a template on a new toplevel binding with local variables specified by a Hash object.

Breaks the buffer into lines that are shorter than maxwidth

Search took: 6ms  ·  Total Results: 3310