Results for: "pstore"

See as_json.

Returns a JSON string representing self:

require 'json/add/exception'
puts Exception.new('Foo').to_json

Output:

{"json_class":"Exception","m":"Foo","b":null}

When this module is included in another, Ruby calls append_features in this module, passing it the receiving module in mod. Ruby’s default implementation is to add the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#include.

Returns an array of all modules used in the current scope. The ordering of modules in the resulting array is not defined.

module A
  refine Object do
  end
end

module B
  refine Object do
  end
end

using A
using B
p Module.used_refinements

produces:

[#<refinement:Object@B>, #<refinement:Object@A>]

Invoked as a callback whenever a constant is assigned on the receiver

module Chatty
  def self.const_added(const_name)
    super
    puts "Added #{const_name.inspect}"
  end
  FOO = 1
end

produces:

Added :FOO

Invoked as a callback whenever an instance method is removed from the receiver.

module Chatty
  def self.method_removed(method_name)
    puts "Removing #{method_name.inspect}"
  end
  def self.some_class_method() end
  def some_instance_method() end
  class << self
    remove_method :some_class_method
  end
  remove_method :some_instance_method
end

produces:

Removing :some_instance_method

Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr:name” on each name in turn. String arguments are converted to symbols. Returns an array of defined method names as symbols.

Defines a named attribute for this module, where the name is symbol.id2name, creating an instance variable (@name) and a corresponding access method to read it. Also creates a method called name= to set the attribute. String arguments are converted to symbols. Returns an array of defined method names as symbols.

module Mod
  attr_accessor(:one, :two) #=> [:one, :one=, :two, :two=]
end
Mod.instance_methods.sort   #=> [:one, :one=, :two, :two=]

Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. If the optional parameter is false, the methods of any ancestors are not included.

module A
  def method1()  end
end
class B
  include A
  def method2()  end
end
class C < B
  def method3()  end
end

A.instance_methods(false)                   #=> [:method1]
B.instance_methods(false)                   #=> [:method2]
B.instance_methods(true).include?(:method1) #=> true
C.instance_methods(false)                   #=> [:method3]
C.instance_methods.include?(:method2)       #=> true

Note that method visibility changes in the current class, as well as aliases, are considered as methods of the current class by this method:

class C < B
  alias method4 method2
  protected :method2
end
C.instance_methods(false).sort               #=> [:method2, :method3, :method4]

Checks for a constant with the given name in mod. If inherit is set, the lookup will also search the ancestors (and Object if mod is a Module).

The value of the constant is returned if a definition is found, otherwise a NameError is raised.

Math.const_get(:PI)   #=> 3.14159265358979

This method will recursively look up constant names if a namespaced class name is provided. For example:

module Foo; class Bar; end end
Object.const_get 'Foo::Bar'

The inherit flag is respected on each lookup. For example:

module Foo
  class Bar
    VAL = 10
  end

  class Baz < Bar; end
end

Object.const_get 'Foo::Baz::VAL'         # => 10
Object.const_get 'Foo::Baz::VAL', false  # => NameError

If the argument is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_get 'foobar' #=> NameError: wrong constant name foobar

Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0)   #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI              #=> 0.00126448926734968

If sym or str is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar

Says whether mod or its ancestors have a constant with the given name:

Float.const_defined?(:EPSILON)      #=> true, found in Float itself
Float.const_defined?("String")      #=> true, found in Object (ancestor)
BasicObject.const_defined?(:Hash)   #=> false

If mod is a Module, additionally Object and its ancestors are checked:

Math.const_defined?(:String)   #=> true, found in Object

In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true is returned directly without autoloading:

module Admin
  autoload :User, 'admin/user'
end
Admin.const_defined?(:User)   #=> true

If the constant is not found the callback const_missing is not called and the method returns false.

If inherit is false, the lookup only checks the constants in the receiver:

IO.const_defined?(:SYNC)          #=> true, found in File::Constants (ancestor)
IO.const_defined?(:SYNC, false)   #=> false, not found in IO itself

In this case, the same logic for autoloading applies.

If the argument is not a valid constant name a NameError is raised with the message “wrong constant name name”:

Hash.const_defined? 'foobar'   #=> NameError: wrong constant name foobar

Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. For example, consider:

def Foo.const_missing(name)
  name # return the constant name as Symbol
end

Foo::UNDEFINED_CONST    #=> :UNDEFINED_CONST: symbol returned

As the example above shows, const_missing is not required to create the missing constant in mod, though that is often a side-effect. The caller gets its return value when triggered. If the constant is also defined, further lookups won’t hit const_missing and will return the value stored in the constant as usual. Otherwise, const_missing will be invoked again.

In the next example, when a reference is made to an undefined constant, const_missing attempts to load a file whose path is the lowercase version of the constant name (thus class Fred is assumed to be in file fred.rb). If defined as a side-effect of loading the file, the method returns the value stored in the constant. This implements an autoload feature similar to Kernel#autoload and Module#autoload, though it differs in important ways.

def Object.const_missing(name)
  @looked_for ||= {}
  str_name = name.to_s
  raise "Constant not found: #{name}" if @looked_for[str_name]
  @looked_for[str_name] = 1
  file = str_name.downcase
  require file
  const_get(name, false)
end

Makes a list of existing constants public.

Makes a list of existing constants private.

Returns true if mod is a singleton class or false if it is an ordinary class or module.

class C
end
C.singleton_class?                  #=> false
C.singleton_class.singleton_class?  #=> true

Returns an UnboundMethod representing the given instance method in mod.

class Interpreter
  def do_a() print "there, "; end
  def do_d() print "Hello ";  end
  def do_e() print "!\n";     end
  def do_v() print "Dave";    end
  Dispatcher = {
    "a" => instance_method(:do_a),
    "d" => instance_method(:do_d),
    "e" => instance_method(:do_e),
    "v" => instance_method(:do_v)
  }
  def interpret(string)
    string.each_char {|b| Dispatcher[b].bind(self).call }
  end
end

interpreter = Interpreter.new
interpreter.interpret('dave')

produces:

Hello there, Dave!

Removes the method identified by symbol from the current class. For an example, see Module#undef_method. String arguments are converted to symbols.

For the given method names, marks the method as passing keywords through a normal argument splat. This should only be called on methods that accept an argument splat (*args) but not explicit keywords or a keyword splat. It marks the method such that if the method is called with keyword arguments, the final hash argument is marked with a special flag such that if it is the final element of a normal argument splat to another method call, and that method call does not include explicit keywords or a keyword splat, the final element is interpreted as keywords. In other words, keywords will be passed through the method to other methods.

This should only be used for methods that delegate keywords to another method, and only for backwards compatibility with Ruby versions before 3.0. See www.ruby-lang.org/en/news/2019/12/12/separation-of-positional-and-keyword-arguments-in-ruby-3-0/ for details on why ruby2_keywords exists and when and how to use it.

This method will probably be removed at some point, as it exists only for backwards compatibility. As it does not exist in Ruby versions before 2.7, check that the module responds to this method before calling it:

module Mod
  def foo(meth, *args, &block)
    send(:"do_#{meth}", *args, &block)
  end
  ruby2_keywords(:foo) if respond_to?(:ruby2_keywords, true)
end

However, be aware that if the ruby2_keywords method is removed, the behavior of the foo method using the above approach will change so that the method does not pass through keywords.

Returns true if the arguments define a valid ordinal date, false otherwise:

Date.valid_ordinal?(2001, 34)  # => true
Date.valid_ordinal?(2001, 366) # => false

See argument start.

Related: Date.jd, Date.ordinal.

Returns a copy of self with the given start value:

d0 = Date.new(2000, 2, 3)
d0.julian? # => false
d1 = d0.new_start(Date::JULIAN)
d1.julian? # => true

See argument start.

Equivalent to Date#- with argument n.

Equivalent to << with argument n.

Equivalent to << with argument n * 12.

Returns a hash of the name/value pairs, to use in pattern matching. Possible keys are: :year, :month, :day, :wday, :yday.

Possible usages:

d = Date.new(2022, 10, 5)

if d in wday: 3, day: ..7  # uses deconstruct_keys underneath
  puts "first Wednesday of the month"
end
#=> prints "first Wednesday of the month"

case d
in year: ...2022
  puts "too old"
in month: ..9
  puts "quarter 1-3"
in wday: 1..5, month:
  puts "working day in month #{month}"
end
#=> prints "working day in month 10"

Note that deconstruction by pattern can also be combined with class check:

if d in Date(wday: 3, day: ..7)
  puts "first Wednesday of the month"
end
Search took: 5ms  ·  Total Results: 4418