Parses the most indented lines into blocks that are marked and added to the frontier
Create a new ClassVariableOperatorWriteNode
node.
Create a new GlobalVariableOperatorWriteNode
node.
Create a new InstanceVariableOperatorWriteNode
node.
Create a new LocalVariableOperatorWriteNode
node.
Returns an array of the grapheme clusters in self
(see Unicode Grapheme Cluster Boundaries):
s = "\u0061\u0308-pqr-\u0062\u0308-xyz-\u0063\u0308" # => "ä-pqr-b̈-xyz-c̈" s.grapheme_clusters # => ["ä", "-", "p", "q", "r", "-", "b̈", "-", "x", "y", "z", "-", "c̈"]
Returns whether self
starts with any of the given string_or_regexp
.
Matches patterns against the beginning of self
. For each given string_or_regexp
, the pattern is:
string_or_regexp
itself, if it is a Regexp
.
Regexp.quote(string_or_regexp)
, if string_or_regexp
is a string.
Returns true
if any pattern matches the beginning, false
otherwise:
'hello'.start_with?('hell') # => true 'hello'.start_with?(/H/i) # => true 'hello'.start_with?('heaven', 'hell') # => true 'hello'.start_with?('heaven', 'paradise') # => false 'тест'.start_with?('т') # => true 'こんにちは'.start_with?('こ') # => true
Related: String#end_with?
.
With a block given, forms the substrings (“lines”) that are the result of splitting self
at each occurrence of the given line separator line_sep
; passes each line to the block; returns self
:
s = <<~EOT This is the first line. This is line two. This is line four. This is line five. EOT s.each_line {|line| p line }
Output:
"This is the first line.\n" "This is line two.\n" "\n" "This is line four.\n" "This is line five.\n"
With a different line_sep
:
s.each_line(' is ') {|line| p line }
Output:
"This is " "the first line.\nThis is " "line two.\n\nThis is " "line four.\nThis is " "line five.\n"
With chomp
as true
, removes the trailing line_sep
from each line:
s.each_line(chomp: true) {|line| p line }
Output:
"This is the first line." "This is line two." "" "This is line four." "This is line five."
With an empty string as line_sep
, forms and passes “paragraphs” by splitting at each occurrence of two or more newlines:
s.each_line('') {|line| p line }
Output:
"This is the first line.\nThis is line two.\n\n" "This is line four.\nThis is line five.\n"
With no block given, returns an enumerator.
Calls the given block with each successive character from self
; returns self
:
'hello'.each_char {|char| print char, ' ' } print "\n" 'тест'.each_char {|char| print char, ' ' } print "\n" 'こんにちは'.each_char {|char| print char, ' ' } print "\n"
Output:
h e l l o т е с т こ ん に ち は
Returns an enumerator if no block is given.
Returns the next-larger representable Float.
These examples show the internally stored values (64-bit hexadecimal) for each Float f
and for the corresponding f.next_float
:
f = 0.0 # 0x0000000000000000 f.next_float # 0x0000000000000001 f = 0.01 # 0x3f847ae147ae147b f.next_float # 0x3f847ae147ae147c
In the remaining examples here, the output is shown in the usual way (result to_s
):
0.01.next_float # => 0.010000000000000002 1.0.next_float # => 1.0000000000000002 100.0.next_float # => 100.00000000000001 f = 0.01 (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.next_float }
Output:
0 0x1.47ae147ae147bp-7 0.01 1 0x1.47ae147ae147cp-7 0.010000000000000002 2 0x1.47ae147ae147dp-7 0.010000000000000004 3 0x1.47ae147ae147ep-7 0.010000000000000005 f = 0.0; 100.times { f += 0.1 } f # => 9.99999999999998 # should be 10.0 in the ideal world. 10-f # => 1.9539925233402755e-14 # the floating point error. 10.0.next_float-10 # => 1.7763568394002505e-15 # 1 ulp (unit in the last place). (10-f)/(10.0.next_float-10) # => 11.0 # the error is 11 ulp. (10-f)/(10*Float::EPSILON) # => 8.8 # approximation of the above. "%a" % 10 # => "0x1.4p+3" "%a" % f # => "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
Related: Float#prev_float
Like backtrace
, but returns each line of the execution stack as a Thread::Backtrace::Location
. Accepts the same arguments as backtrace
.
f = Fiber.new { Fiber.yield } f.resume loc = f.backtrace_locations.first loc.label #=> "yield" loc.path #=> "test.rb" loc.lineno #=> 1
Returns the Fiber
scheduler, that was last set for the current thread with Fiber.set_scheduler
if and only if the current fiber is non-blocking.
Returns the locale charmap name. It returns nil if no appropriate information.
Debian GNU/Linux LANG=C Encoding.locale_charmap #=> "ANSI_X3.4-1968" LANG=ja_JP.EUC-JP Encoding.locale_charmap #=> "EUC-JP" SunOS 5 LANG=C Encoding.locale_charmap #=> "646" LANG=ja Encoding.locale_charmap #=> "eucJP"
The result is highly platform dependent. So Encoding.find(Encoding.locale_charmap)
may cause an error. If you need some encoding object even for unknown locale, Encoding.find
(“locale”) can be used.
Returns the next object as an array in the enumerator, and move the internal position forward. When the position reached at the end, StopIteration
is raised.
See class-level notes about external iterators.
This method can be used to distinguish yield
and yield nil
.
o = Object.new def o.each yield yield 1 yield 1, 2 yield nil yield [1, 2] end e = o.to_enum p e.next_values p e.next_values p e.next_values p e.next_values p e.next_values e = o.to_enum p e.next p e.next p e.next p e.next p e.next ## yield args next_values next # yield [] nil # yield 1 [1] 1 # yield 1, 2 [1, 2] [1, 2] # yield nil [nil] nil # yield [1, 2] [[1, 2]] [1, 2]
Returns an array of instance variable names for the receiver. Note that simply defining an accessor does not create the corresponding instance variable.
class Fred attr_accessor :a1 def initialize @iv = 3 end end Fred.new.instance_variables #=> [:@iv]
Returns the backtrace (the list of code locations that led to the exception), as an array of Thread::Backtrace::Location
instances.
Example (assuming the code is stored in the file named t.rb
):
def division(numerator, denominator) numerator / denominator end begin division(1, 0) rescue => ex p ex.backtrace_locations # ["t.rb:2:in 'Integer#/'", "t.rb:2:in 'Object#division'", "t.rb:6:in '<main>'"] loc = ex.backtrace_locations.first p loc.class # Thread::Backtrace::Location p loc.path # "t.rb" p loc.lineno # 2 p loc.label # "Integer#/" end
The value returned by this method might be adjusted when raising (see Kernel#raise
), or during intermediate handling by set_backtrace
.
See also backtrace
that provide the same value as an array of strings. (Note though that two values might not be consistent with each other when backtraces are manually adjusted.)
See Backtraces.
Sets the backtrace value for self
; returns the given value
.
The value
might be:
an array of Thread::Backtrace::Location
;
an array of String
instances;
a single String
instance; or
nil
.
Using array of Thread::Backtrace::Location
is the most consistent option: it sets both backtrace
and backtrace_locations
. It should be preferred when possible. The suitable array of locations can be obtained from Kernel#caller_locations
, copied from another error, or just set to the adjusted result of the current error’s backtrace_locations
:
require 'json' def parse_payload(text) JSON.parse(text) # test.rb, line 4 rescue JSON::ParserError => ex ex.set_backtrace(ex.backtrace_locations[2...]) raise end parse_payload('{"wrong: "json"') # test.rb:4:in 'Object#parse_payload': unexpected token at '{"wrong: "json"' (JSON::ParserError) # # An error points to the body of parse_payload method, # hiding the parts of the backtrace related to the internals # of the "json" library # The error has both #backtace and #backtrace_locations set # consistently: begin parse_payload('{"wrong: "json"') rescue => ex p ex.backtrace # ["test.rb:4:in 'Object#parse_payload'", "test.rb:20:in '<main>'"] p ex.backtrace_locations # ["test.rb:4:in 'Object#parse_payload'", "test.rb:20:in '<main>'"] end
When the desired stack of locations is not available and should be constructed from scratch, an array of strings or a singular string can be used. In this case, only backtrace
is affected:
def parse_payload(text) JSON.parse(text) rescue JSON::ParserError => ex ex.set_backtrace(["dsl.rb:34", "framework.rb:1"]) # The error have the new value in #backtrace: p ex.backtrace # ["dsl.rb:34", "framework.rb:1"] # but the original one in #backtrace_locations p ex.backtrace_locations # [".../json/common.rb:221:in 'JSON::Ext::Parser.parse'", ...] end parse_payload('{"wrong: "json"')
Calling set_backtrace
with nil
clears up backtrace
but doesn’t affect backtrace_locations
:
def parse_payload(text) JSON.parse(text) rescue JSON::ParserError => ex ex.set_backtrace(nil) p ex.backtrace # nil p ex.backtrace_locations # [".../json/common.rb:221:in 'JSON::Ext::Parser.parse'", ...] end parse_payload('{"wrong: "json"')
On reraising of such an exception, both backtrace
and backtrace_locations
is set to the place of reraising:
def parse_payload(text) JSON.parse(text) rescue JSON::ParserError => ex ex.set_backtrace(nil) raise # test.rb, line 7 end begin parse_payload('{"wrong: "json"') rescue => ex p ex.backtrace # ["test.rb:7:in 'Object#parse_payload'", "test.rb:11:in '<main>'"] p ex.backtrace_locations # ["test.rb:7:in 'Object#parse_payload'", "test.rb:11:in '<main>'"] end
See Backtraces.
Return a list of the local variable names defined where this NameError
exception was raised.
Internal use only.
Returns an array of all modules used in the current scope. The ordering of modules in the resulting array is not defined.
module A refine Object do end end module B refine Object do end end using A using B p Module.used_refinements
produces:
[#<refinement:Object@B>, #<refinement:Object@A>]
Invoked as a callback whenever an instance method is undefined from the receiver.
module Chatty def self.method_undefined(method_name) puts "Undefining #{method_name.inspect}" end def self.some_class_method() end def some_instance_method() end class << self undef_method :some_class_method end undef_method :some_instance_method end
produces:
Undefining :some_instance_method
Says whether mod or its ancestors have a constant with the given name:
Float.const_defined?(:EPSILON) #=> true, found in Float itself Float.const_defined?("String") #=> true, found in Object (ancestor) BasicObject.const_defined?(:Hash) #=> false
If mod is a Module
, additionally Object
and its ancestors are checked:
Math.const_defined?(:String) #=> true, found in Object
In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true
is returned directly without autoloading:
module Admin autoload :User, 'admin/user' end Admin.const_defined?(:User) #=> true
If the constant is not found the callback const_missing
is not called and the method returns false
.
If inherit
is false, the lookup only checks the constants in the receiver:
IO.const_defined?(:SYNC) #=> true, found in File::Constants (ancestor) IO.const_defined?(:SYNC, false) #=> false, not found in IO itself
In this case, the same logic for autoloading applies.
If the argument is not a valid constant name a NameError
is raised with the message “wrong constant name name”:
Hash.const_defined? 'foobar' #=> NameError: wrong constant name foobar
Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false
.
class One @@var1 = 1 end class Two < One @@var2 = 2 end One.class_variables #=> [:@@var1] Two.class_variables #=> [:@@var2, :@@var1] Two.class_variables(false) #=> [:@@var2]
Defines an instance method in the receiver. The method parameter can be a Proc
, a Method
or an UnboundMethod
object. If a block is specified, it is used as the method body. If a block or the method parameter has parameters, they’re used as method parameters. This block is evaluated using instance_eval
.
class A def fred puts "In Fred" end def create_method(name, &block) self.class.define_method(name, &block) end define_method(:wilma) { puts "Charge it!" } define_method(:flint) {|name| puts "I'm #{name}!"} end class B < A define_method(:barney, instance_method(:fred)) end a = B.new a.barney a.wilma a.flint('Dino') a.create_method(:betty) { p self } a.betty
produces:
In Fred Charge it! I'm Dino! #<B:0x401b39e8>
Returns true
if the named method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. Public and protected methods are matched. String
arguments are converted to symbols.
module A def method1() end def protected_method1() end protected :protected_method1 end class B def method2() end def private_method2() end private :private_method2 end class C < B include A def method3() end end A.method_defined? :method1 #=> true C.method_defined? "method1" #=> true C.method_defined? "method2" #=> true C.method_defined? "method2", true #=> true C.method_defined? "method2", false #=> false C.method_defined? "method3" #=> true C.method_defined? "protected_method1" #=> true C.method_defined? "method4" #=> false C.method_defined? "private_method2" #=> false
Return the accept character set for all new CGI
instances.