Deletes the named files, returning the number of names passed as arguments. Raises an exception on any error. Since the underlying implementation relies on the unlink(2)
system call, the type of exception raised depends on its error type (see linux.die.net/man/2/unlink) and has the form of e.g. Errno::ENOENT.
See also Dir::rmdir
.
Truncates the file file_name to be at most integer bytes long. Not available on all platforms.
f = File.new("out", "w") f.write("1234567890") #=> 10 f.close #=> nil File.truncate("out", 5) #=> 0 File.size("out") #=> 5
Returns a new string formed by joining the strings using "/"
.
File.join("usr", "mail", "gumby") #=> "usr/mail/gumby"
Like File#stat
, but does not follow the last symbolic link; instead, returns a File::Stat
object for the link itself:
File.symlink('t.txt', 'symlink') f = File.new('symlink') f.stat.size # => 47 f.lstat.size # => 11
Truncates file to at most integer bytes. The file must be opened for writing. Not available on all platforms.
f = File.new("out", "w") f.syswrite("1234567890") #=> 10 f.truncate(5) #=> 0 f.close() #=> nil File.size("out") #=> 5
Return true
if the named file exists.
file_name can be an IO
object.
“file exists” means that stat() or fstat() system call is successful.
Returns true
if the named file is writable by the effective user and group id of this process. See eaccess(3).
Note that some OS-level security features may cause this to return true even though the file is not writable by the effective user/group.
Returns true
if filepath
points to a symbolic link, false
otherwise:
symlink = File.symlink('t.txt', 'symlink') File.symlink?('symlink') # => true File.symlink?('t.txt') # => false
Returns a string which represents the encoding for programmers.
Encoding::UTF_8.inspect #=> "#<Encoding:UTF-8>" Encoding::ISO_2022_JP.inspect #=> "#<Encoding:ISO-2022-JP (dummy)>"
Returns the list of loaded encodings.
Encoding.list #=> [#<Encoding:ASCII-8BIT>, #<Encoding:UTF-8>, #<Encoding:ISO-2022-JP (dummy)>] Encoding.find("US-ASCII") #=> #<Encoding:US-ASCII> Encoding.list #=> [#<Encoding:ASCII-8BIT>, #<Encoding:UTF-8>, #<Encoding:US-ASCII>, #<Encoding:ISO-2022-JP (dummy)>]
Search the encoding with specified name. name should be a string.
Encoding.find("US-ASCII") #=> #<Encoding:US-ASCII>
Names which this method accept are encoding names and aliases including following special aliases
default external encoding
default internal encoding
locale encoding
filesystem encoding
An ArgumentError
is raised when no encoding with name. Only Encoding.find("internal")
however returns nil when no encoding named “internal”, in other words, when Ruby has no default internal encoding.
Rewinds the enumeration sequence to the beginning.
If the enclosed object responds to a “rewind” method, it is called.
Creates a printable version of e.
Returns a Digest
subclass by name
in a thread-safe manner even when on-demand loading is involved.
require 'digest' Digest("MD5") # => Digest::MD5 Digest(:SHA256) # => Digest::SHA256 Digest(:Foo) # => LoadError: library not found for class Digest::Foo -- digest/foo
Returns a string containing a human-readable representation of obj. The default inspect
shows the object’s class name, an encoding of its memory address, and a list of the instance variables and their values (by calling inspect
on each of them). User defined classes should override this method to provide a better representation of obj. When overriding this method, it should return a string whose encoding is compatible with the default external encoding.
[ 1, 2, 3..4, 'five' ].inspect #=> "[1, 2, 3..4, \"five\"]" Time.new.inspect #=> "2008-03-08 19:43:39 +0900" class Foo end Foo.new.inspect #=> "#<Foo:0x0300c868>" class Bar def initialize @bar = 1 end end Bar.new.inspect #=> "#<Bar:0x0300c868 @bar=1>"
Returns a string representation of self
:
x = RuntimeError.new('Boom') x.inspect # => "#<RuntimeError: Boom>" x = RuntimeError.new x.inspect # => "#<RuntimeError: RuntimeError>"
Returns the backtrace (the list of code locations that led to the exception), as an array of strings.
Example (assuming the code is stored in the file named t.rb
):
def division(numerator, denominator) numerator / denominator end begin division(1, 0) rescue => ex p ex.backtrace # ["t.rb:2:in 'Integer#/'", "t.rb:2:in 'Object#division'", "t.rb:6:in '<main>'"] loc = ex.backtrace.first p loc.class # String end
The value returned by this method migth be adjusted when raising (see Kernel#raise
), or during intermediate handling by set_backtrace
.
See also backtrace_locations
that provide the same value, as structured objects. (Note though that two values might not be consistent with each other when backtraces are manually adjusted.)
see Backtraces.
Return the status value associated with this system exit.
Invokes Module.append_features
on each parameter in reverse order.
Returns an array of Refinement
defined within the receiver.
module A refine Integer do end refine String do end end p A.refinements
produces:
[#<refinement:Integer@A>, #<refinement:String@A>]
In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.
Module.constants.first(4) # => [:ARGF, :ARGV, :ArgumentError, :Array] Module.constants.include?(:SEEK_SET) # => false class IO Module.constants.include?(:SEEK_SET) # => true end
The second form calls the instance method constants
.
Callback invoked whenever the receiver is included in another module or class. This should be used in preference to Module.append_features
if your code wants to perform some action when a module is included in another.
module A def A.included(mod) puts "#{self} included in #{mod}" end end module Enumerable include A end # => prints "A included in Enumerable"
Returns true
if module is included or prepended in mod or one of mod’s ancestors.
module A end class B include A end class C < B end B.include?(A) #=> true C.include?(A) #=> true A.include?(A) #=> false