Use Addrinfo#getnameinfo
instead. This method is deprecated for the following reasons:
Uncommon address representation: 4/16-bytes binary string to represent IPv4/IPv6 address.
gethostbyaddr() may take a long time and it may block other threads. (GVL cannot be released since gethostbyname() is not thread safe.)
This method uses gethostbyname() function already removed from POSIX.
This method obtains the host information for address.
p Socket.gethostbyaddr([221,186,184,68].pack("CCCC")) #=> ["carbon.ruby-lang.org", [], 2, "\xDD\xBA\xB8D"] p Socket.gethostbyaddr([127,0,0,1].pack("CCCC")) ["localhost", [], 2, "\x7F\x00\x00\x01"] p Socket.gethostbyaddr(([0]*15+[1]).pack("C"*16)) #=> ["localhost", ["ip6-localhost", "ip6-loopback"], 10, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"]
Obtains the port number for port.
If protocol_name is not given, “tcp” is assumed.
Socket.getservbyport(80) #=> "www" Socket.getservbyport(514, "tcp") #=> "shell" Socket.getservbyport(514, "udp") #=> "syslog"
Returns the user and group on the peer of the UNIX socket. The result is a two element array which contains the effective uid and the effective gid.
Socket.unix_server_loop("/tmp/sock") {|s| begin euid, egid = s.getpeereid # Check the connected client is myself or not. next if euid != Process.uid # do something about my resource. ensure s.close end }
Receives a message.
maxlen is the maximum number of bytes to receive.
flags should be a bitwise OR of Socket::MSG_* constants.
outbuf will contain only the received data after the method call even if it is not empty at the beginning.
UNIXSocket.pair {|s1, s2| s1.puts "Hello World" p s2.recv(4) #=> "Hell" p s2.recv(4, Socket::MSG_PEEK) #=> "o Wo" p s2.recv(4) #=> "o Wo" p s2.recv(10) #=> "rld\n" }
recvmsg receives a message using recvmsg(2) system call in blocking manner.
maxmesglen is the maximum length of mesg to receive.
flags is bitwise OR of MSG_* constants such as Socket::MSG_PEEK.
maxcontrollen is the maximum length of controls (ancillary data) to receive.
opts is option hash. Currently :scm_rights=>bool is the only option.
:scm_rights option specifies that application expects SCM_RIGHTS control message. If the value is nil or false, application don’t expects SCM_RIGHTS control message. In this case, recvmsg closes the passed file descriptors immediately. This is the default behavior.
If :scm_rights value is neither nil nor false, application expects SCM_RIGHTS control message. In this case, recvmsg creates IO
objects for each file descriptors for Socket::AncillaryData#unix_rights
method.
The return value is 4-elements array.
mesg is a string of the received message.
sender_addrinfo is a sender socket address for connection-less socket. It is an Addrinfo
object. For connection-oriented socket such as TCP, sender_addrinfo is platform dependent.
rflags is a flags on the received message which is bitwise OR of MSG_* constants such as Socket::MSG_TRUNC. It will be nil if the system uses 4.3BSD style old recvmsg system call.
controls is ancillary data which is an array of Socket::AncillaryData
objects such as:
#<Socket::AncillaryData: AF_UNIX SOCKET RIGHTS 7>
maxmesglen and maxcontrollen can be nil. In that case, the buffer will be grown until the message is not truncated. Internally, MSG_PEEK is used. Buffer full and MSG_CTRUNC are checked for truncation.
recvmsg can be used to implement recv_io as follows:
mesg, sender_sockaddr, rflags, *controls = sock.recvmsg(:scm_rights=>true) controls.each {|ancdata| if ancdata.cmsg_is?(:SOCKET, :RIGHTS) return ancdata.unix_rights[0] end }
Receives a message and return the message as a string and an address which the message come from.
maxlen is the maximum number of bytes to receive.
flags should be a bitwise OR of Socket::MSG_* constants.
ipaddr is the same as IPSocket#{peeraddr,addr}.
u1 = UDPSocket.new u1.bind("127.0.0.1", 4913) u2 = UDPSocket.new u2.send "uuuu", 0, "127.0.0.1", 4913 p u1.recvfrom(10) #=> ["uuuu", ["AF_INET", 33230, "localhost", "127.0.0.1"]]
Lookups the IP address of host.
require 'socket' IPSocket.getaddress("localhost") #=> "127.0.0.1" IPSocket.getaddress("ip6-localhost") #=> "::1"
creates a listening socket bound to self.
returns the socket type as an integer.
Addrinfo.tcp("localhost", 80).protocol == Socket::IPPROTO_TCP #=> true
returns the socket address as packed struct sockaddr string.
Addrinfo.tcp("localhost", 80).to_sockaddr #=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
Listens for connections, using the specified int
as the backlog. A call to listen only applies if the socket
is of type SOCK_STREAM or SOCK_SEQPACKET.
backlog
- the maximum length of the queue for pending connections.
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' ) socket.bind( sockaddr ) socket.listen( 5 )
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) socket.listen( 1 )
On unix based systems the above will work because a new sockaddr
struct is created on the address ADDR_ANY, for an arbitrary port number as handed off by the kernel. It will not work on Windows, because Windows requires that the socket
is bound by calling bind before it can listen.
If the backlog amount exceeds the implementation-dependent maximum queue length, the implementation’s maximum queue length will be used.
On unix-based based systems the following system exceptions may be raised if the call to listen fails:
Errno::EBADF - the socket argument is not a valid file descriptor
Errno::EDESTADDRREQ - the socket is not bound to a local address, and the protocol does not support listening on an unbound socket
Errno::EINVAL - the socket is already connected
Errno::ENOTSOCK - the socket argument does not refer to a socket
Errno::EOPNOTSUPP - the socket protocol does not support listen
Errno::EACCES - the calling process does not have appropriate privileges
Errno::EINVAL - the socket has been shut down
Errno::ENOBUFS - insufficient resources are available in the system to complete the call
On Windows systems the following system exceptions may be raised if the call to listen fails:
Errno::ENETDOWN - the network is down
Errno::EADDRINUSE - the socket’s local address is already in use. This usually occurs during the execution of bind but could be delayed if the call to bind was to a partially wildcard address (involving ADDR_ANY) and if a specific address needs to be committed at the time of the call to listen
Errno::EINPROGRESS - a Windows Sockets 1.1 call is in progress or the service provider is still processing a callback function
Errno::EINVAL - the socket
has not been bound with a call to bind.
Errno::EISCONN - the socket
is already connected
Errno::EMFILE - no more socket descriptors are available
Errno::ENOBUFS - no buffer space is available
Errno::ENOTSOC - socket
is not a socket
Errno::EOPNOTSUPP - the referenced socket
is not a type that supports the listen method
listen manual pages on unix-based systems
listen function in Microsoft’s Winsock functions reference
Listens for connections, using the specified int
as the backlog. A call to listen only applies if the socket
is of type SOCK_STREAM or SOCK_SEQPACKET.
backlog
- the maximum length of the queue for pending connections.
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' ) socket.bind( sockaddr ) socket.listen( 5 )
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) socket.listen( 1 )
On unix based systems the above will work because a new sockaddr
struct is created on the address ADDR_ANY, for an arbitrary port number as handed off by the kernel. It will not work on Windows, because Windows requires that the socket
is bound by calling bind before it can listen.
If the backlog amount exceeds the implementation-dependent maximum queue length, the implementation’s maximum queue length will be used.
On unix-based based systems the following system exceptions may be raised if the call to listen fails:
Errno::EBADF - the socket argument is not a valid file descriptor
Errno::EDESTADDRREQ - the socket is not bound to a local address, and the protocol does not support listening on an unbound socket
Errno::EINVAL - the socket is already connected
Errno::ENOTSOCK - the socket argument does not refer to a socket
Errno::EOPNOTSUPP - the socket protocol does not support listen
Errno::EACCES - the calling process does not have appropriate privileges
Errno::EINVAL - the socket has been shut down
Errno::ENOBUFS - insufficient resources are available in the system to complete the call
On Windows systems the following system exceptions may be raised if the call to listen fails:
Errno::ENETDOWN - the network is down
Errno::EADDRINUSE - the socket’s local address is already in use. This usually occurs during the execution of bind but could be delayed if the call to bind was to a partially wildcard address (involving ADDR_ANY) and if a specific address needs to be committed at the time of the call to listen
Errno::EINPROGRESS - a Windows Sockets 1.1 call is in progress or the service provider is still processing a callback function
Errno::EINVAL - the socket
has not been bound with a call to bind.
Errno::EISCONN - the socket
is already connected
Errno::EMFILE - no more socket descriptors are available
Errno::ENOBUFS - no buffer space is available
Errno::ENOTSOC - socket
is not a socket
Errno::EOPNOTSUPP - the referenced socket
is not a type that supports the listen method
listen manual pages on unix-based systems
listen function in Microsoft’s Winsock functions reference
Use Addrinfo.getaddrinfo
instead. This method is deprecated for the following reasons:
The 3rd element of the result is the address family of the first address. The address families of the rest of the addresses are not returned.
gethostbyname() may take a long time and it may block other threads. (GVL cannot be released since gethostbyname() is not thread safe.)
This method uses gethostbyname() function already removed from POSIX.
This method lookups host information by hostname.
TCPSocket.gethostbyname("localhost") #=> ["localhost", ["hal"], 2, "127.0.0.1"]
Receives a message via unixsocket.
maxlen is the maximum number of bytes to receive.
flags should be a bitwise OR of Socket::MSG_* constants.
outbuf will contain only the received data after the method call even if it is not empty at the beginning.
s1 = Socket.new(:UNIX, :DGRAM, 0) s1_ai = Addrinfo.unix("/tmp/sock1") s1.bind(s1_ai) s2 = Socket.new(:UNIX, :DGRAM, 0) s2_ai = Addrinfo.unix("/tmp/sock2") s2.bind(s2_ai) s3 = UNIXSocket.for_fd(s2.fileno) s1.send "a", 0, s2_ai p s3.recvfrom(10) #=> ["a", ["AF_UNIX", "/tmp/sock1"]]
Reinitializes the stream with the given other
(string or StringIO
) and mode
; see IO.new
:
StringIO.open('foo') do |strio| p strio.string strio.reopen('bar') p strio.string other_strio = StringIO.new('baz') strio.reopen(other_strio) p strio.string other_strio.close end
Output:
"foo" "bar" "baz"
Returns underlying string:
StringIO.open('foo') do |strio| p strio.string strio.string = 'bar' p strio.string end
Output:
"foo" "bar"
Related: StringIO#string=
(assigns the underlying string).
Assigns the underlying string as other_string
, and sets position to zero; returns other_string
:
StringIO.open('foo') do |strio| p strio.string strio.string = 'bar' p strio.string end
Output:
"foo" "bar"
Related: StringIO#string
(returns the underlying string).
Sets the current position and line number to zero; see Position and Line Number.
See IO#read
.
See IO#pread
.
Sets both [byte position] and [character position] to zero, and clears [match values]; returns self
:
scanner = StringScanner.new('foobarbaz') scanner.exist?(/bar/) # => 6 scanner.reset # => #<StringScanner 0/9 @ "fooba..."> put_situation(scanner) # Situation: # pos: 0 # charpos: 0 # rest: "foobarbaz" # rest_size: 9 # => nil match_values_cleared?(scanner) # => true
Returns the [stored string]:
scanner = StringScanner.new('foobar') scanner.string # => "foobar" scanner.concat('baz') scanner.string # => "foobarbaz"
Replaces the [stored string] with the given other_string
:
Sets both [positions] to zero.
Clears [match values].
Returns other_string
.
scanner = StringScanner.new('foobar') scanner.scan(/foo/) put_situation(scanner) # Situation: # pos: 3 # charpos: 3 # rest: "bar" # rest_size: 3 match_values_cleared?(scanner) # => false scanner.string = 'baz' # => "baz" put_situation(scanner) # Situation: # pos: 0 # charpos: 0 # rest: "baz" # rest_size: 3 match_values_cleared?(scanner) # => true
Attempts to [match] the given pattern
anywhere (at any [position]) n the [target substring]; does not modify the [positions].
If the match succeeds:
Returns a byte offset: the distance in bytes between the current [position] and the end of the matched substring.
Sets all [match values].
scanner = StringScanner.new('foobarbazbatbam') scanner.pos = 6 scanner.exist?(/bat/) # => 6 put_match_values(scanner) # Basic match values: # matched?: true # matched_size: 3 # pre_match: "foobarbaz" # matched : "bat" # post_match: "bam" # Captured match values: # size: 1 # captures: [] # named_captures: {} # values_at: ["bat", nil] # []: # [0]: "bat" # [1]: nil put_situation(scanner) # Situation: # pos: 6 # charpos: 6 # rest: "bazbatbam" # rest_size: 9
If the match fails:
Returns nil
.
Clears all [match values].
scanner.exist?(/nope/) # => nil match_values_cleared?(scanner) # => true