Results for: "strip"

Attempts to return an array, based on the given object.

If object is an array, returns object.

Otherwise if object responds to :to_ary. calls object.to_ary: if the return value is an array or nil, returns that value; if not, raises TypeError.

Otherwise returns nil.

Related: see Methods for Creating an Array.

If object is an Integer object, returns object.

Integer.try_convert(1) # => 1

Otherwise if object responds to :to_int, calls object.to_int and returns the result.

Integer.try_convert(1.25) # => 1

Returns nil if object does not respond to :to_int

Integer.try_convert([]) # => nil

Raises an exception unless object.to_int returns an Integer object.

If object is a String object, returns object.

Otherwise if object responds to :to_str, calls object.to_str and returns the result.

Returns nil if object does not respond to :to_str.

Raises an exception unless object.to_str returns a String object.

Returns an array of the grapheme clusters in self (see Unicode Grapheme Cluster Boundaries):

s = "\u0061\u0308-pqr-\u0062\u0308-xyz-\u0063\u0308" # => "ä-pqr-b̈-xyz-c̈"
s.grapheme_clusters
# => ["ä", "-", "p", "q", "r", "-", "b̈", "-", "x", "y", "z", "-", "c̈"]

Returns whether self starts with any of the given string_or_regexp.

Matches patterns against the beginning of self. For each given string_or_regexp, the pattern is:

Returns true if any pattern matches the beginning, false otherwise:

'hello'.start_with?('hell')               # => true
'hello'.start_with?(/H/i)                 # => true
'hello'.start_with?('heaven', 'hell')     # => true
'hello'.start_with?('heaven', 'paradise') # => false
'тест'.start_with?('т')                   # => true
'こんにちは'.start_with?('こ')              # => true

Related: String#end_with?.

Like String#tr_s, but modifies self in place. Returns self if any changes were made, nil otherwise.

Related: String#squeeze!.

Like backtrace, but returns each line of the execution stack as a Thread::Backtrace::Location. Accepts the same arguments as backtrace.

f = Fiber.new { Fiber.yield }
f.resume
loc = f.backtrace_locations.first
loc.label  #=> "yield"
loc.path   #=> "test.rb"
loc.lineno #=> 1

Returns true if the named file is writable by the real user and group id of this process. See access(3).

Note that some OS-level security features may cause this to return true even though the file is not writable by the real user/group.

If file_name is writable by others, returns an integer representing the file permission bits of file_name. Returns nil otherwise. The meaning of the bits is platform dependent; on Unix systems, see stat(2).

file_name can be an IO object.

File.world_writable?("/tmp")                  #=> 511
m = File.world_writable?("/tmp")
sprintf("%o", m)                              #=> "777"

Returns the list of available encoding names.

Encoding.name_list
#=> ["US-ASCII", "ASCII-8BIT", "UTF-8",
      "ISO-8859-1", "Shift_JIS", "EUC-JP",
      "Windows-31J",
      "BINARY", "CP932", "eucJP"]

Returns the list of private methods accessible to obj. If the all parameter is set to false, only those methods in the receiver will be listed.

Returns true if obj is an instance of the given class. See also Object#kind_of?.

class A;     end
class B < A; end
class C < B; end

b = B.new
b.instance_of? A   #=> false
b.instance_of? B   #=> true
b.instance_of? C   #=> false

Returns the backtrace (the list of code locations that led to the exception), as an array of Thread::Backtrace::Location instances.

Example (assuming the code is stored in the file named t.rb):

def division(numerator, denominator)
  numerator / denominator
end

begin
  division(1, 0)
rescue => ex
  p ex.backtrace_locations
  # ["t.rb:2:in 'Integer#/'", "t.rb:2:in 'Object#division'", "t.rb:6:in '<main>'"]
  loc = ex.backtrace_locations.first
  p loc.class
  # Thread::Backtrace::Location
  p loc.path
  # "t.rb"
  p loc.lineno
  # 2
  p loc.label
  # "Integer#/"
end

The value returned by this method might be adjusted when raising (see Kernel#raise), or during intermediate handling by set_backtrace.

See also backtrace that provide the same value as an array of strings. (Note though that two values might not be consistent with each other when backtraces are manually adjusted.)

See Backtraces.

Sets the backtrace value for self; returns the given value.

The value might be:

Using array of Thread::Backtrace::Location is the most consistent option: it sets both backtrace and backtrace_locations. It should be preferred when possible. The suitable array of locations can be obtained from Kernel#caller_locations, copied from another error, or just set to the adjusted result of the current error’s backtrace_locations:

require 'json'

def parse_payload(text)
  JSON.parse(text)  # test.rb, line 4
rescue JSON::ParserError => ex
  ex.set_backtrace(ex.backtrace_locations[2...])
  raise
end

parse_payload('{"wrong: "json"')
# test.rb:4:in 'Object#parse_payload': unexpected token at '{"wrong: "json"' (JSON::ParserError)
#
# An error points to the body of parse_payload method,
# hiding the parts of the backtrace related to the internals
# of the "json" library

# The error has both #backtace and #backtrace_locations set
# consistently:
begin
  parse_payload('{"wrong: "json"')
rescue => ex
  p ex.backtrace
  # ["test.rb:4:in 'Object#parse_payload'", "test.rb:20:in '<main>'"]
  p ex.backtrace_locations
  # ["test.rb:4:in 'Object#parse_payload'", "test.rb:20:in '<main>'"]
end

When the desired stack of locations is not available and should be constructed from scratch, an array of strings or a singular string can be used. In this case, only backtrace is affected:

def parse_payload(text)
  JSON.parse(text)
rescue JSON::ParserError => ex
  ex.set_backtrace(["dsl.rb:34", "framework.rb:1"])
  # The error have the new value in #backtrace:
  p ex.backtrace
  # ["dsl.rb:34", "framework.rb:1"]

  # but the original one in #backtrace_locations
  p ex.backtrace_locations
  # [".../json/common.rb:221:in 'JSON::Ext::Parser.parse'", ...]
end

parse_payload('{"wrong: "json"')

Calling set_backtrace with nil clears up backtrace but doesn’t affect backtrace_locations:

def parse_payload(text)
  JSON.parse(text)
rescue JSON::ParserError => ex
  ex.set_backtrace(nil)
  p ex.backtrace
  # nil
  p ex.backtrace_locations
  # [".../json/common.rb:221:in 'JSON::Ext::Parser.parse'", ...]
end

parse_payload('{"wrong: "json"')

On reraising of such an exception, both backtrace and backtrace_locations is set to the place of reraising:

def parse_payload(text)
  JSON.parse(text)
rescue JSON::ParserError => ex
  ex.set_backtrace(nil)
  raise # test.rb, line 7
end

begin
  parse_payload('{"wrong: "json"')
rescue => ex
  p ex.backtrace
  # ["test.rb:7:in 'Object#parse_payload'", "test.rb:11:in '<main>'"]
  p ex.backtrace_locations
  # ["test.rb:7:in 'Object#parse_payload'", "test.rb:11:in '<main>'"]
end

See Backtraces.

Return a list of the local variable names defined where this NameError exception was raised.

Internal use only.

Return true if the caused method was called as private.

Invoked as a callback whenever a constant is assigned on the receiver

module Chatty
  def self.const_added(const_name)
    super
    puts "Added #{const_name.inspect}"
  end
  FOO = 1
end

produces:

Added :FOO

Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr:name” on each name in turn. String arguments are converted to symbols. Returns an array of defined method names as symbols.

Defines a named attribute for this module, where the name is symbol.id2name, creating an instance variable (@name) and a corresponding access method to read it. Also creates a method called name= to set the attribute. String arguments are converted to symbols. Returns an array of defined method names as symbols.

module Mod
  attr_accessor(:one, :two) #=> [:one, :one=, :two, :two=]
end
Mod.instance_methods.sort   #=> [:one, :one=, :two, :two=]

Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. If the optional parameter is false, the methods of any ancestors are not included.

module A
  def method1()  end
end
class B
  include A
  def method2()  end
end
class C < B
  def method3()  end
end

A.instance_methods(false)                   #=> [:method1]
B.instance_methods(false)                   #=> [:method2]
B.instance_methods(true).include?(:method1) #=> true
C.instance_methods(false)                   #=> [:method3]
C.instance_methods.include?(:method2)       #=> true

Note that method visibility changes in the current class, as well as aliases, are considered as methods of the current class by this method:

class C < B
  alias method4 method2
  protected :method2
end
C.instance_methods(false).sort               #=> [:method2, :method3, :method4]

Checks for a constant with the given name in mod. If inherit is set, the lookup will also search the ancestors (and Object if mod is a Module).

The value of the constant is returned if a definition is found, otherwise a NameError is raised.

Math.const_get(:PI)   #=> 3.14159265358979

This method will recursively look up constant names if a namespaced class name is provided. For example:

module Foo; class Bar; end end
Object.const_get 'Foo::Bar'

The inherit flag is respected on each lookup. For example:

module Foo
  class Bar
    VAL = 10
  end

  class Baz < Bar; end
end

Object.const_get 'Foo::Baz::VAL'         # => 10
Object.const_get 'Foo::Baz::VAL', false  # => NameError

If the argument is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_get 'foobar' #=> NameError: wrong constant name foobar

Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0)   #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI              #=> 0.00126448926734968

If sym or str is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar

Says whether mod or its ancestors have a constant with the given name:

Float.const_defined?(:EPSILON)      #=> true, found in Float itself
Float.const_defined?("String")      #=> true, found in Object (ancestor)
BasicObject.const_defined?(:Hash)   #=> false

If mod is a Module, additionally Object and its ancestors are checked:

Math.const_defined?(:String)   #=> true, found in Object

In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true is returned directly without autoloading:

module Admin
  autoload :User, 'admin/user'
end
Admin.const_defined?(:User)   #=> true

If the constant is not found the callback const_missing is not called and the method returns false.

If inherit is false, the lookup only checks the constants in the receiver:

IO.const_defined?(:SYNC)          #=> true, found in File::Constants (ancestor)
IO.const_defined?(:SYNC, false)   #=> false, not found in IO itself

In this case, the same logic for autoloading applies.

If the argument is not a valid constant name a NameError is raised with the message “wrong constant name name”:

Hash.const_defined? 'foobar'   #=> NameError: wrong constant name foobar

Removes the definition of the given constant, returning that constant’s previous value. If that constant referred to a module, this will not change that module’s name and can lead to confusion.

Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. For example, consider:

def Foo.const_missing(name)
  name # return the constant name as Symbol
end

Foo::UNDEFINED_CONST    #=> :UNDEFINED_CONST: symbol returned

As the example above shows, const_missing is not required to create the missing constant in mod, though that is often a side-effect. The caller gets its return value when triggered. If the constant is also defined, further lookups won’t hit const_missing and will return the value stored in the constant as usual. Otherwise, const_missing will be invoked again.

In the next example, when a reference is made to an undefined constant, const_missing attempts to load a file whose path is the lowercase version of the constant name (thus class Fred is assumed to be in file fred.rb). If defined as a side-effect of loading the file, the method returns the value stored in the constant. This implements an autoload feature similar to Kernel#autoload and Module#autoload, though it differs in important ways.

def Object.const_missing(name)
  @looked_for ||= {}
  str_name = name.to_s
  raise "Constant not found: #{name}" if @looked_for[str_name]
  @looked_for[str_name] = 1
  file = str_name.downcase
  require file
  const_get(name, false)
end
Search took: 5ms  ·  Total Results: 2501