Results for: "strip"

Returns a list of signal names mapped to the corresponding underlying signal numbers.

Signal.list   #=> {"EXIT"=>0, "HUP"=>1, "INT"=>2, "QUIT"=>3, "ILL"=>4, "TRAP"=>5, "IOT"=>6, "ABRT"=>6, "FPE"=>8, "KILL"=>9, "BUS"=>7, "SEGV"=>11, "SYS"=>31, "PIPE"=>13, "ALRM"=>14, "TERM"=>15, "URG"=>23, "STOP"=>19, "TSTP"=>20, "CONT"=>18, "CHLD"=>17, "CLD"=>17, "TTIN"=>21, "TTOU"=>22, "IO"=>29, "XCPU"=>24, "XFSZ"=>25, "VTALRM"=>26, "PROF"=>27, "WINCH"=>28, "USR1"=>10, "USR2"=>12, "PWR"=>30, "POLL"=>29}
No documentation available

Iterates over strongly connected component in the subgraph reachable from node.

Return value is unspecified.

each_strongly_connected_component_from doesn’t call tsort_each_node.

class G
  include TSort
  def initialize(g)
    @g = g
  end
  def tsort_each_child(n, &b) @g[n].each(&b) end
  def tsort_each_node(&b) @g.each_key(&b) end
end

graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
graph.each_strongly_connected_component_from(2) {|scc| p scc }
#=> [4]
#   [2]

graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
graph.each_strongly_connected_component_from(2) {|scc| p scc }
#=> [4]
#   [2, 3]

Iterates over strongly connected components in a graph. The graph is represented by node and each_child.

node is the first node. each_child should have call method which takes a node argument and yields for each child node.

Return value is unspecified.

TSort.each_strongly_connected_component_from is a class method and it doesn’t need a class to represent a graph which includes TSort.

graph = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
each_child = lambda {|n, &b| graph[n].each(&b) }
TSort.each_strongly_connected_component_from(1, each_child) {|scc|
  p scc
}
#=> [4]
#   [2, 3]
#   [1]

Returns the octet string representation of the elliptic curve point.

conversion_form specifies how the point is converted. Possible values are:

“foo” ^^^^^

‘foo` ^^^^^

“foo” ^^^^^

‘foo` ^^^^^

@foo = 1 ^^^^^^^^

Returns value specified by the member name of VT_RECORD OLE object. If the member name is not correct, KeyError exception is raised. If you can’t access member variable of VT_RECORD OLE object directly, use this method.

If COM server in VB.NET ComServer project is the following:

Imports System.Runtime.InteropServices
Public Class ComClass
    Public Structure ComObject
        Public object_id As Ineger
    End Structure
End Class

and Ruby Object class has title attribute:

then accessing object_id of ComObject from Ruby is as the following:

srver = WIN32OLE.new('ComServer.ComClass')
obj = WIN32OLE::Record.new('ComObject', server)
# obj.object_id returns Ruby Object#object_id
obj.ole_instance_variable_get(:object_id) # => nil

Sets value specified by the member name of VT_RECORD OLE object. If the member name is not correct, KeyError exception is raised. If you can’t set value of member of VT_RECORD OLE object directly, use this method.

If COM server in VB.NET ComServer project is the following:

Imports System.Runtime.InteropServices
Public Class ComClass
    <MarshalAs(UnmanagedType.BStr)> _
    Public title As String
    Public cost As Integer
End Class

then setting value of the ‘title’ member is as following:

srver = WIN32OLE.new('ComServer.ComClass')
obj = WIN32OLE::Record.new('Book', server)
obj.ole_instance_variable_set(:title, "The Ruby Book")

Example:

Foo
^^^

Example:

Foo::Bar
   ^^^^^

Compile a ConstantWriteNode node

Dispatch enter and leave events for ConstantWriteNode nodes and continue walking the tree.

Inspect a ConstantWriteNode node.

Copy a ConstantWriteNode node

Create a new ClassVariableWriteNode node.

Create a new ConstantAndWriteNode node.

Create a new ConstantOperatorWriteNode node.

Create a new ConstantOrWriteNode node.

Create a new ConstantPathWriteNode node.

Create a new GlobalVariableWriteNode node.

Create a new InstanceVariableReadNode node.

Search took: 5ms  ·  Total Results: 2501